Trade-offs and synergies in urban climate policies
The case of Paris

Vincent Viguié
Stéphane Hallegatte

09/10/2014
Trade-Offs and Synergies in Urban Climate Policies

- Urban climate policies are not developed or implemented in a vacuum
 - Environmental policies can result in positive feedback with respect to economic and social issues
 - Conflicts among different policy goals can also take place leading to trade-offs and implementation obstacles

- How, and to what extent, can we make mitigation, adaptation, economic, and social policies synergetic?
 - How can we assess these negative and positive feedbacks?
A multicriteria analysis

- **We carry out a multicriteria analysis of three urban policies**
 - Each policy is analyzed with respect to several policy goals

- **We use a simple integrated city model, NEDUM-2D**
 - Land-use transport interaction model
 - Calibrated on Paris urban area
 - Simulates rents level, population density and transport demand across the city
 - Validation of the model over the 1900–2010 period

- **Modelling Assumptions**
 - NEDUM-2D model used to simulate the evolution of the Paris urban area between 2010 and 2030
NEDUM-2D model

- **Standard urban economics modelling** *(Alonso 1964, Mills 1967, Muth 1969)*

- **3 mechanisms:**
 1. **Households’ tradeoff:**
 - Lower transportation costs and shorter commuting time when living close to the city center, and
 - Larger dwellings and lower rent in remote areas
 2. Investors optimize the housing density as a function of rents and construction costs
 3. Different evolution timescales for rents, population density, buildings etc.

- **Simplifying hypotheses:**
 - All households have the same income.
 - One trip per day towards the city center.
 - One city center
NEDUM-2D model

- Total population
- Construction costs
- Average households income

- Land-use constraints
- Transport times and costs
- Population density
- Rents
- Average dwelling size
- Floor-area ratio

12/12/2012

Vincent Viguié
Validation process

We run the model from 1900 to 2010 using:
• Data on population;
• Data on average income;
• Data on transportation cost, speed, and localization;
• Construction costs change like income.
Paris, 1990
Paris, 1960
Model results: Rents (2008)

Average rent (€/m²/month)
Model results: Rents (2008)

Rents in Île de France in 2008
Moving average of the data
Model results for year 2008

$R^2 = 51.8\%$

Monthly rent as a function of distance

Distance to the center of Paris (km)

€/m²

km

Number of households/km²

Density as a function of distance

\[R^2 = 77.2\% \]

- Density in Île de France in 2006
- Moving average of the data
- Model results for year 2008
A multicriteria analysis

- We carry out a multicriteria analysis of three urban policies.

 - Each policy is analyzed with respect to several policy goals.

 - We use a simple integrated city model, NEDUM-2D.

 - Land-use transport interaction model.
 - Calibrated on Paris urban area.
 - Simulates rents level, population density and transport demand across the city.
 - Validation of the model over the 1900–2010 period.

- Modelling Assumptions

 - NEDUM-2D model used to simulate the evolution of the Paris urban area between 2010 and 2030.
Urban Policies

Greenbelt policy
- Land use regulations which prohibit building in areas that are not already densely inhabited in 2010
Urban Policies

Greenbelt policy

- Land use regulations which prohibit building in areas that are not already densely inhabited in 2010

Public transport subsidy

- Single tariff for all destinations in the Paris urban area
- Financed by a lump sum tax
Urban Policies

- Greenbelt policy:
 - Land use regulations prohibiting building in areas not already densely inhabited in 2010.

- Public transport subsidy:
 - Single tariff for all destinations in the Paris urban area.
 - Financed by a lump sum tax.

- Zoning policy:
 - Prohibits new buildings in flood-prone areas.

- Compared to a "do-nothing" scenario.
Urban Policies

Greenbelt policy
- Land use regulations which prohibit building in areas that are not already densely inhabited in 2010

Public transport subsidy
- Single tariff for all destinations in the Paris urban area
- Financed by a lump sum tax

Zoning policy to reduce the risk of flooding
- Prohibits new buildings in flood-prone areas

➡️ Compared to a “do-nothing” scenario
Policy Goals and Indicators

<table>
<thead>
<tr>
<th>Policy goals</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change mitigation</td>
<td>Average distance traveled by car for commuting</td>
</tr>
<tr>
<td>Adaptation and natural risk reduction</td>
<td>Population living in flood-prone areas</td>
</tr>
<tr>
<td>Natural area and biodiversity protection</td>
<td>Total urbanized area</td>
</tr>
<tr>
<td>Housing affordability</td>
<td>Rents in the center of the urban area divided by available income</td>
</tr>
<tr>
<td>Policy neutrality</td>
<td>Gini index of the profitability of real estate investments</td>
</tr>
</tbody>
</table>
Policy Goals and Indicators

<table>
<thead>
<tr>
<th>Policy goals</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change mitigation</td>
<td>Average distance traveled by car for commuting</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Policy Goals and Indicators

<table>
<thead>
<tr>
<th>Policy goals</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change mitigation</td>
<td>Average distance traveled by car for commuting</td>
</tr>
<tr>
<td>Adaptation and natural risk reduction</td>
<td>Population living in flood-prone areas</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Policy Goals and Indicators

<table>
<thead>
<tr>
<th>Policy goals</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change mitigation</td>
<td>Average distance traveled by car for commuting</td>
</tr>
<tr>
<td>Adaptation and natural risk reduction</td>
<td>Population living in flood-prone areas</td>
</tr>
<tr>
<td>Natural area and biodiversity protection</td>
<td>Total urbanized area</td>
</tr>
</tbody>
</table>

09/10/2014 Vincent Viguié
Policy Goals and Indicators

<table>
<thead>
<tr>
<th>Policy goals</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change mitigation</td>
<td>Average distance traveled by car for commuting</td>
</tr>
<tr>
<td>Adaptation and natural risk reduction</td>
<td>Population living in flood-prone areas</td>
</tr>
<tr>
<td>Natural area and biodiversity protection</td>
<td>Total urbanized area</td>
</tr>
<tr>
<td>Housing affordability</td>
<td>Rents in the center of the urban area divided by available income</td>
</tr>
</tbody>
</table>
Policy Goals and Indicators

<table>
<thead>
<tr>
<th>Policy goals</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Climate change mitigation</td>
<td>Average distance traveled by car for commuting</td>
</tr>
<tr>
<td>Adaptation and natural risk reduction</td>
<td>Population living in flood-prone areas</td>
</tr>
<tr>
<td>Natural area and biodiversity protection</td>
<td>Total urbanized area</td>
</tr>
<tr>
<td>Housing affordability</td>
<td>Rents in the center of the urban area divided by available income</td>
</tr>
<tr>
<td>Policy neutrality</td>
<td>Gini index of the profitability of real estate investments</td>
</tr>
</tbody>
</table>
Simulation results

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Greenbelt</th>
<th>Public transport subsidy</th>
<th>Flood risk zoning</th>
<th>Policy mix</th>
<th>Do-nothing scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in average daily distance driven in car (m)</td>
<td>+ 1,570</td>
<td>-440</td>
<td>+ 2,550</td>
<td>-880</td>
<td>+ 2,560</td>
</tr>
<tr>
<td>Change in population in flood-prone areas (thousands of households)</td>
<td>+39,000</td>
<td>-4,000</td>
<td>-6,000</td>
<td>-8,000</td>
<td>+ 6,000</td>
</tr>
<tr>
<td>Change in total urbanized area (km²)</td>
<td>0</td>
<td>+ 690</td>
<td>+ 470</td>
<td>0</td>
<td>+ 480</td>
</tr>
<tr>
<td>Redistributive impacts (Gini index)</td>
<td>+ 0.093</td>
<td>+ 0.271</td>
<td>+ 0.201</td>
<td>+ 0.146</td>
<td>+ 0.203</td>
</tr>
<tr>
<td>Change in dwelling size in the center of Paris (m²)</td>
<td>+ 0.17</td>
<td>+ 1.73</td>
<td>+ 0.79</td>
<td>+ 0.95</td>
<td>+ 0.82</td>
</tr>
</tbody>
</table>
Simulation results

- Climate change mitigation
- Adaptation and natural risk reduction
- Natural area and biodiversity protection
- Policy neutrality
- Housing affordability

Do-nothing scenario
- Greenbelt
- Public transport subsidy
- Flood risk zoning
Simulation results

- Climate change mitigation
- Adaptation and natural risk reduction
- Housing affordability
- Natural area and biodiversity protection
- Policy neutrality

- Greenbelt
- Flood risk zoning
- Do-nothing scenario
- Public transport subsidy

09/10/2014 Vincent Viguié
Simulation results

- Climate change mitigation
- Adaptation and natural risk reduction
- Natural area and biodiversity protection
- Policy neutrality
- Housing affordability

- Do-nothing scenario
- Greenbelt
- Public transport subsidy
- Flood risk zoning

09/10/2014 Vincent Viguié
Simulation results

- Housing affordability
- Policy neutrality
- Natural area and biodiversity protection
- Adaptation and natural risk reduction
- Climate change mitigation

- Do-nothing scenario
- Greenbelt
- Public transport subsidy
- Flood risk zoning
Win-win solutions by combining policies is possible
Win-win solutions by combining policies is possible

When all three policies are applied together, the situation is improved as measured along all policy goals, compared with the do nothing scenario.

Mainstreaming of climate objectives with other policy goals can help design better policies.
A few insights...

- Appropriate integrated city modelling can enable to provide quantification of interactions between urban policies.

- In a policy mix, the consequences of each policy are not simply additive.
 - This nonlinearity permits building policy combinations that are win-win strategies.
 - Feasibility in practice ?...

- Stand-alone adaptation and mitigation policies are unlikely to be politically acceptable.
 - Need to mainstream climate policy within urban planning.

- Urban economic models and urban-scale long term scenarios provide useful insights into mitigation and adaptation policies.