

Low carbon farming technology : rice field

Sirintornthep Towprayoon, Patikorn Sriphirom, Nittaya Cha-un and Amnat Chidthaisong

The Joint Graduate school of Energy and Environment, Center of Excellence on Energy Technology and Environment, Earth System Science Research Cluster,

King Mongkut's University of Technology Thonburi,

Emission from Agriculture sector

24 % Agriculture 16% CH4 6% N2O

Projection of GHG emission Agricultural Sector

- Emission from agriculture is increasing
- Nitrous oxide from Soil

Cereal use in developed and developing countries

Source: OECD/FAO (2018), "OECD-FAO Agricultural Outlook", OECD Agriculture statistics (database), http://dx.doi.org/10.1787/agr-outl-data-en.

StatLink http://dx.doi.org/10.1787/888933742891

Trade as percentage of consumption

Source: OECD/FAO (2018), "OECD-FAO Agricultural Outlook", OECD Agriculture statistics (database), http://dx.doi.org/10.1787/agr-outl-data-en.

in developing countries but trade for consumption in developed country

Rice is used as food

- High share of rice area in agriculture in most SEAN countries
- Major source of emission in ASEAN countries

StatLink http://dx.doi.org/10.1787/888933742929

Agricultural land and rice area in SEA countries

Share of rice area in ASEAN countries, 2015

Situation of GHG emission in SEA

- -Share of emission from rice field to national total =10.7 %
- -Country with high emission from rice field ,Vietnam, Thailand, Indonesia cover 78% of emission from rice field in ASEAN country

Data from NC and BUR

Emission reduction targets of SEA countries (NDC)

Country	Target (%)	Conditions
Indonesia	29-41	Reduction below BAU by 2030
Thailand	20-25	
Vietnam	8-25	
Philippines	67	BAU 2010-2030
Malaysia	35-45	GHG intensity below BAU by 2030
Singapore	30	Reduction below 2005 base year

Vietnam:

-System of Rice Intensity (SRI) include reducing production input, (seed, fertilizer, pesticides, irrigation water) by 500,000 hectares and reduce 2 Mt CO₂eq/year

Indonesia:

-Low emission crop 926,000 hectares in 2030

- Water efficiency concept 820,000 hectares in 2030

Challenges

Global emission factor

Broad range of emission

Challenges

Methane and nitrous oxide emission flux from field measure in Thailand

What is low carbon farming

 Low carbon farming: use of farming methods or technology to reduce greenhouse gas emissions, and to capture/ hold carbon in plant and soils.

• Reduce GHG emission: no till cropping, nutrient sufficient application, water management

• Carbon capture in Soil: staw incorporation, biochar application, compost, cover crop

MECHANISMS

Low carbon technology

N-management : Tailor-made fertilizer

Fertilizer application based on soil testing and "Tailor-made fertilizer"

- Right amounts of the right nutrient at the right time to the right crop at the right place.
- "Tailor-made" fertilization was comprised of four steps:
 - 1. Field identification of soil series
 - 2. Soil test kit analysis (pH, N, P, K) of field soil
 - 3. Fertilizer recommendations with computer-based decision-aids
 - 4. Farmer empowerment people-centered development, interactive learning, farmer networking

Crop year 2011	Tailor-made fertilizer technology	Farmer's practice
Rice yield (kg/ha)	6,006	4,950
Fertilizer cost (USD/ha)	75.4	124

- Application of "Tailor-made fertilizer" can reduce fertilizer cost by 21%, and increase crop yield by 15% compared with farmer's practice (*Yost et al., 2013*).
- Applying tailor-made fertilizer in maize cultivation in Thailand can reduce GHG emission by 22% (Khonpikul et al., 2017)

Water management : alternative wet and dry

- AWD practice is allowing the water table to drop below the soil surface at one or multiple points during cultivation.
- AWD and other single- or multiple- drying practices have been used for several decades as water-saving practices.

Continuous Flooding (CF)

Alternate Wetting and Drying (AWD)

Water management: alternative wet and dry

 At present, AWD is widely accepted as the most promising practice for reducing GHG emissions from irrigated rice for its large methane reductions and multiple benefits.

Water management : alternative wet and dry

Country	CH ₄ emission (%)	N ₂ O emission (%)	GWP (%)	Yield (%)	Water use reduction (%)	Ref.
	- 49.13	+ 24.71	- 25.67	- 6.89	- 41.99	Chidthaisong et al., 2018
Thailand	- 35.64	+ 3.58		- 10.80	-34.77%	Towprayoon et al., 2005
	- 10.52 to 26.20	+ 7.37 to 21.84	- 4.91 to 9.12	+ 1.59	- 4.16 to 10.31%	Sriphirom et al., 2017
Vietnam	- 67.14 to 71.30	+120.45 to 148.15	- 62.05 to 67.50	- 2.81 to 11.13		Paddy et al., 2014
Viculaiii	- 26	did not differ	- 26 to 29	+ 9.75 to 10.88	-14 to 15%	Tran et al., 2018

Country	CH ₄ emission (%)	N ₂ O emission (%)	GWP (%)	Yield (%)	Water use reduction (%)	Ref.
	- 24.46 to 39.63	+ 64.38 to 118.75	- 9.64 to 13.21	- 0.23	- 42.79 to 51.51	Sibayan et al., 2018
Philippines					- 30	Richards and Sander, 2014
					- 42.8 to 53.7	Lampayan et al., 2014
Myanmar						
Cambodia	- 29 to 44					Ly et al., 2015
Indonesia	- 35 to 38	- 12.22 to 14.81	- 36.21 to 36.43	+ 1.56	- 5.50 to 7.37	Setyanto et al., 2018

AWD Research in ASEAN

- -Broad range of methane reduction by 20-60 %
- -N₂O is increased
- Yield are varied

Application AWD in Philippines could reduce emission by 20 %

Carbon Management : Crop rotation

- Crop rotation reduce CH4 from rice field in the next consecutive season by 40-45 %
- High reduction when compare to yearly double rice cultivation by 78-84 %
- N2O emission is high in rotation crop cultivation

Carbon Management: Biochar application

 A stable solid material rich in carbon content that can effectively capture carbon and lock the carbon into the soil

Carbon Management: Biochar application

Country	CH₄ emission (%)	N ₂ O emission (%)	Yield (%)	Ref.
Thailand	- 15.38 to 46.15		+ 41.06 to 145.93	Thammasom et al., 2016
	- 10.30 to 42.48	- 7.89 to 31.79	+ 2.69 to 4.70	Sriphirom et al., 2017
Vietnam	- 41.77 to 56.19	- 14.10 to 30.93		Paddy et al., 2014
Philippines				
Myanmar				
Cambodia	- 56.04 to 62.22	+ 28 to 121		Ly et al., 2015
Indonesia				

Reduced methane 10-60 % N₂O both reduce and increase -7.8% to +121 %

Reduced CH₄ emission from China rice cultivation in several types of soils as compared to biomass and fertilizer application

Integrated system: AWD + Biochar

Seasonal Combined Emissions of CH₄ and N₂O

Fig. 7 Total GWP (100 years) of rice two crops under two systems.

Different letters denote significant differences (P < 0.05) between treatments of two crops under two systems.

Total GWP (100 years) of rice two crops under two systems.

	Total GWP	% changed	
Treatment	(t CO ₂ eq ha ⁻¹ crop ⁻	from	
	1)	conventional*	
First crop/In	complete AWD (wet	: season)	
CTC	12.97±0.42 b		
CTA	12.28±0.36 c	- 5.32%	
ВС	8.29±0.41 h		
ВА	7.92±0.38 j	- 4.46%	
BFC	11.78±0.34 d		
BFA	11.08±0.46 f	- 5.94%	
Second crop/Complete AWD (dry season)			
CTC	13.21± 0.37 a		
CTA	11.78±0.38 d	- 10.83%	
ВС	8.13±0.34 i		
ВА	7.23±0.32 k	- 11.07%	
BFC	11.67±0.38 e		
BFA	10.24±0.43 g	- 12.25%	

^{*}Percentage of change as compared with conventional system under the same treatment.

Integrated system: AWD + Biochar

Water Consumption

Water consumptions of two crops under two systems.

Different letters denote significant differences (P < 0.05) between treatments of two crops under two systems.

Water consumptions of two crops under two systems.

	Water	% changed from	
Treatment	consumption	conventional*	
	(L m ⁻² day ⁻¹)		
First crop/Ir	ncomplete AWD (wet	season)	
CTC	8.27±0.86 d		
CTA	6.55±0.75 f	- 20.80%	
ВС	8.19±0.76 de		
ВА	6.47±0.56 f	- 21.00%	
BFC	8.17±1.03 e		
BFA	6.52±0.62 f	- 20.20%	
Second crop	o/Complete AWD (dry	y season)	
CTC	10.72±0.82 a		
CTA	10.27±1.12 b	- 4.20%	
ВС	10.68±0.78 a		
ВА	10.00±1.03 c	- 6.37%	
BFC	10.69±0.75 a		
BFA	10.18±0.96 b	- 4.77%	

^{*}Percentage of change as compared with conventional under the same treatment.

Multi-benefit and sustainability

- Healthy Soil: increase soil C in the long run
- Water security: reduced by 30-40 percent
- Quality of life: low investment, high income
- Adaptation: precision farming, integrated farming

Remarks

- Rice cultivation play an important role in SEA in term of food security and GHG emission
- Low carbon farming technique can be implemented with long term benefit to environment and socioeconomics
- Technologies are varied by location and specific location

Thank you

