
Towards long-term carbon neutral Asia: Growing importance of forestry and land use management - frameworking the session-

Shuzo Nishioka Institute for Global Environmental Strategies October 2017 Bangkok

Azumino in early su

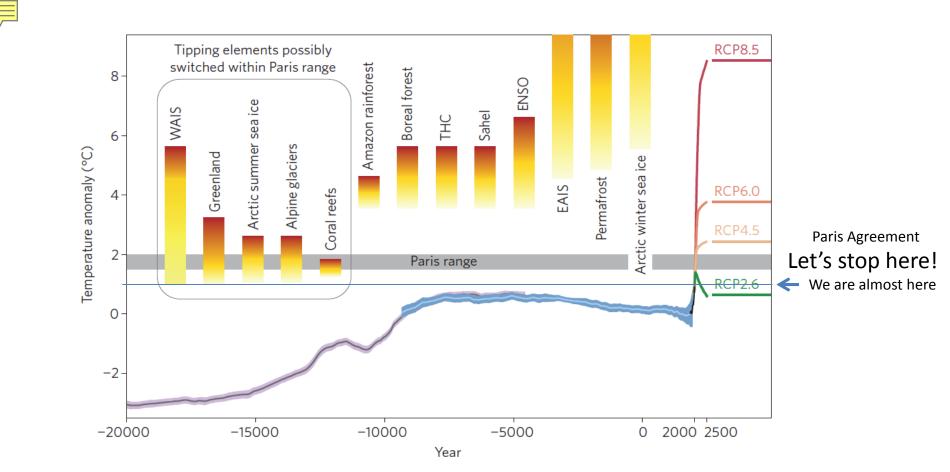
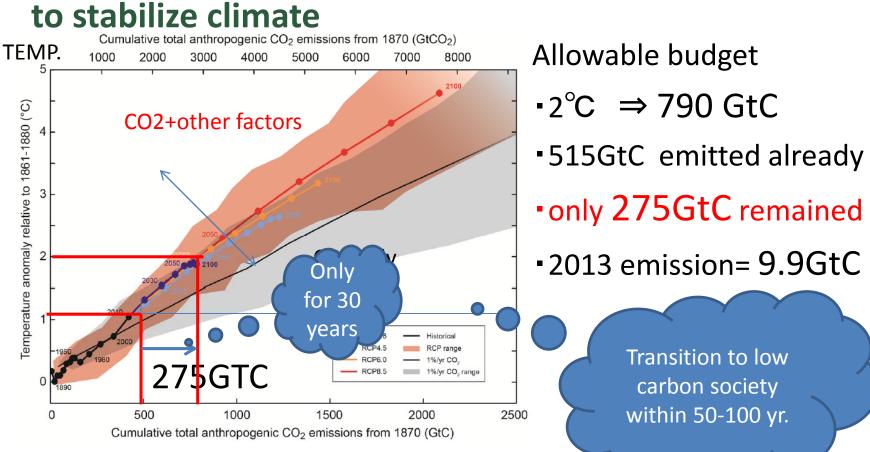
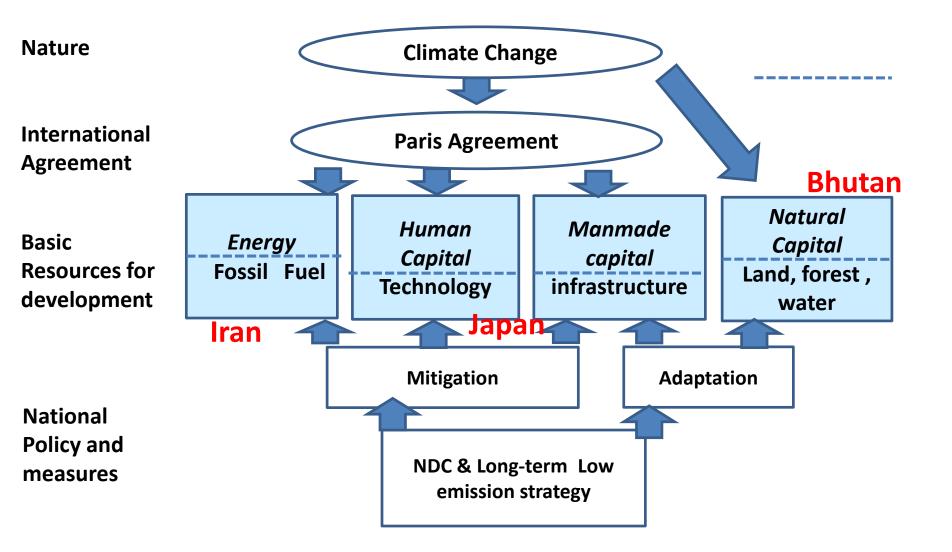
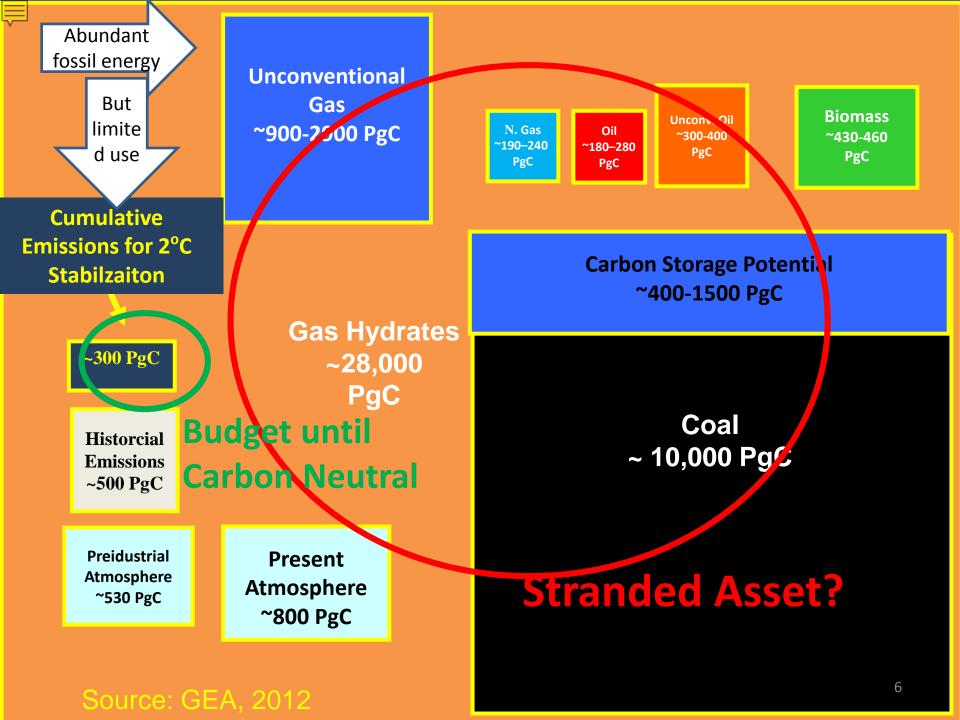



Figure 1 | Tipping elements in context of the global mean temperature evolution. Shown is the globalmean surface temperature evolution from the Last Glacial Maximum through the Holocene, based on palaeoclimatic proxy data35,36 (grey and light blue lines, with the purple and blue shading showing one standard deviation), instrumental measurements since 1750 ad (HadCRUT data, black line) and different global warming scenarios for the future (see ref. 37 for the latter). Threshold ranges for crossing various tipping points where major subsystems of the climate system are destabilized have been added from ref. 8, 14 and 37–40.

出典: Hans Joachim Schellnhuber, Stefan Rahmstorf and Ricarda Winkelmann, Why the right climate target was agreed in Paris, COMMENTARY: NATURE CLIMATE CHANGE, VOL 6, JULY 2016, 649-653

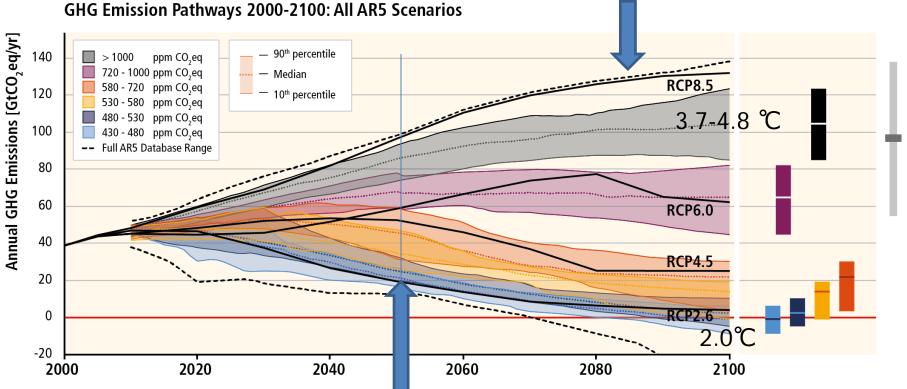
Note: WAIS:West Antarctic Ice Sheet, THC: Thermohaline circulation

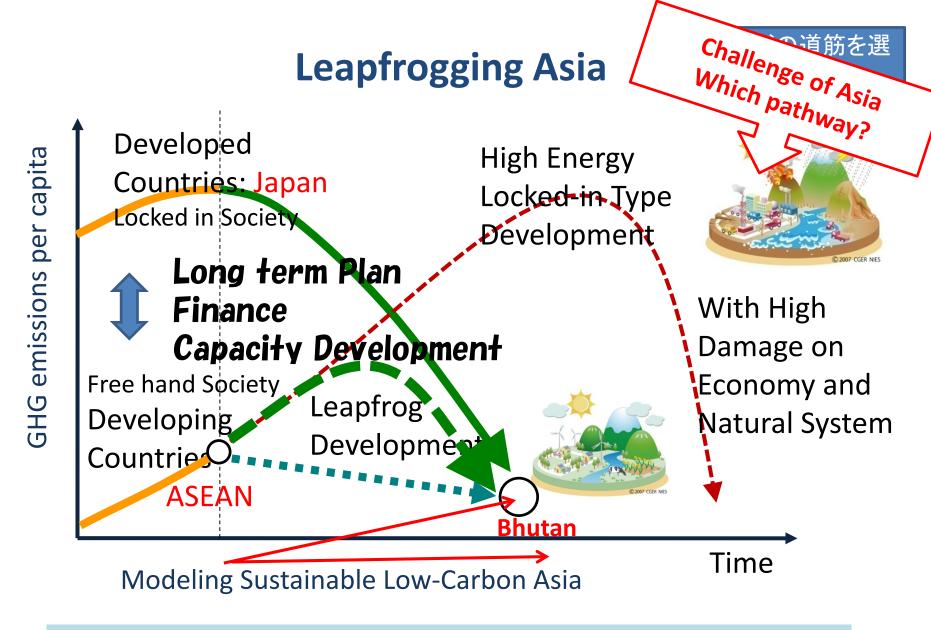

Temp. rises in relation with cumulative GHG emission
⇒Temp. rises as long as emission continues
⇒ Zero emission is only one ultimate solution



Cumulative total anthropogenic CO2 emission from 1870 (GtCO2)

(IPCC AR4 and Emori, NIES)

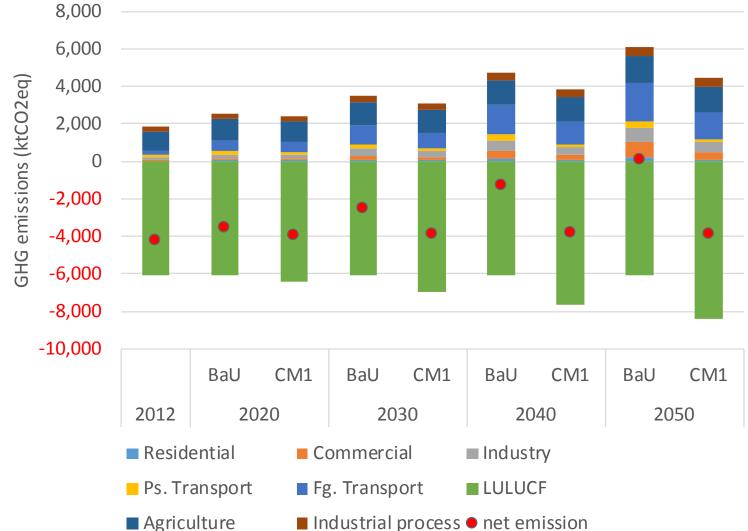

Climate Change Impacts Values of National Development Resources



Global target: Halving current emission by 2050

Without more mitigation, global mean surface temperature might increase by 3.7° to 4.8°C over the 21st century

To avoid 2 degree rise, path of passing 50% reduction from now in 2050 is feasible and reasonable.

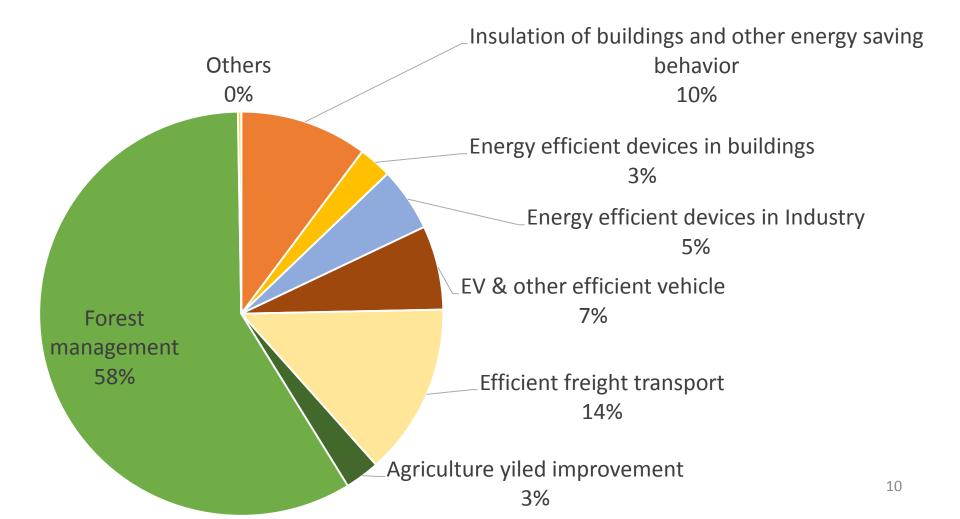


"Asian Low-Carbon Society Scenario Development Study" FY2009-2013, funded by Global Environmental Research Program, MOEJ

Keeping Carbon neutral Bhutan: Preliminary results: GHG emissions

Projection was done in every 10 years from 2020 to 2050.

Net GHG emission become slightly POSITIVE in 2050 BaU. Low-carbon measures are necessary in order to keep being a net NEGATIVE emission country.



9

Emission reduction contribution in 2050

The largest contributor to emission reduction was forest management, which occupies more than half of the emission reduction. It is followed by "Efficient freight transport" and "Insulation of buildings and other energy saving behavior".

The result shows measure in both LULUCF and Energy sectors are necessary.

Natural resource & its management in Bhutan

Hydro-Power

Forest for Biomass & absorption Soil

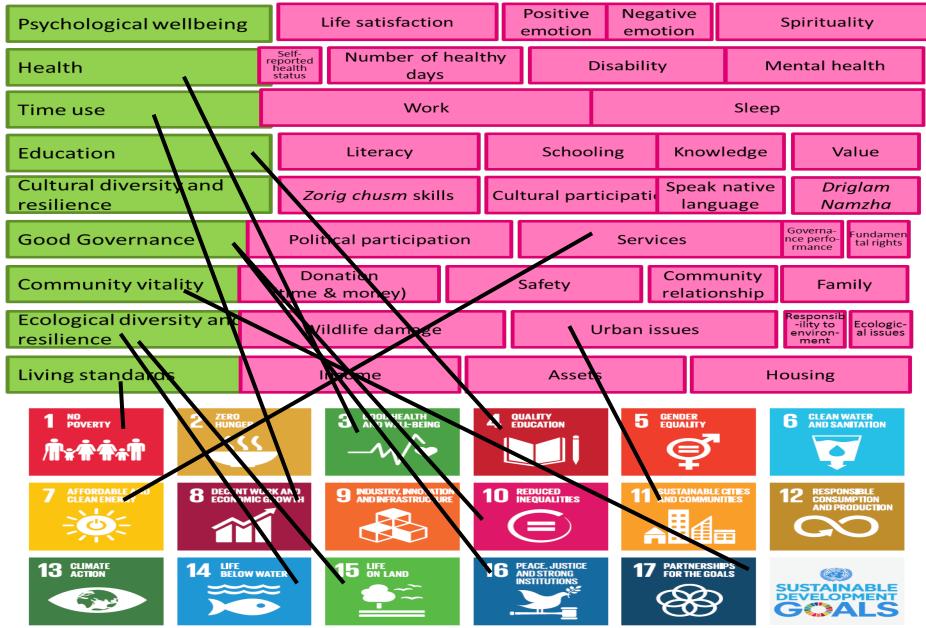
Biodiversity

National Park shares half of land area

National survey of carbon stock of forest and soil

Power line reaches 97% of residence

Energy sources & access



Gross National Happiness (Indices for the 9 domains)

Width of a box shows weight given to each index

Challenge5 : How to strengthen good governance under Gross National Happiness target?

Governance

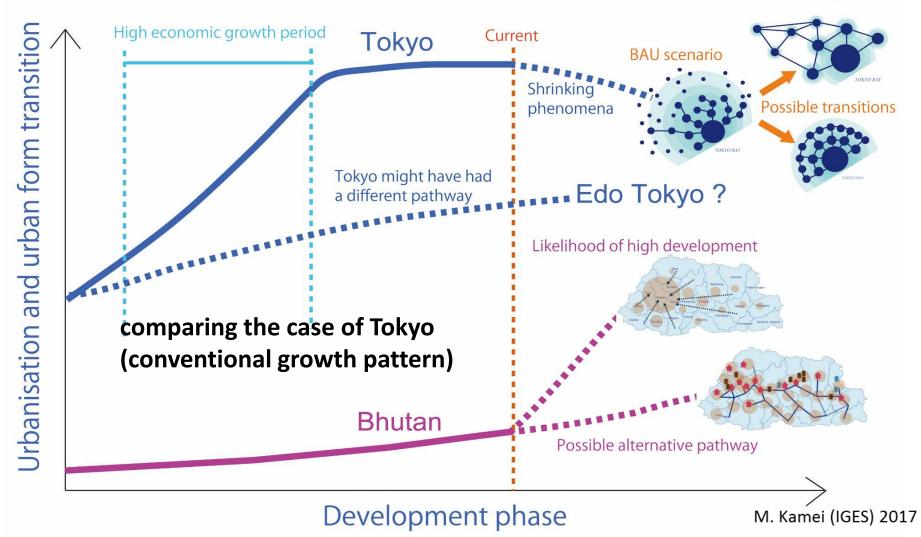
- Development Plan of Bhutan bases on "Gross national Happiness (GNH)" concept
- GNH Indices for 9 domains:
 - Psychological well-being, Health, Time use (Work, Sleep), Education, Cultural diversity and resilience, Good governance, Community Vitality, Ecological diversity and resilience, Living standard (Income, Asset, housing)

⇒

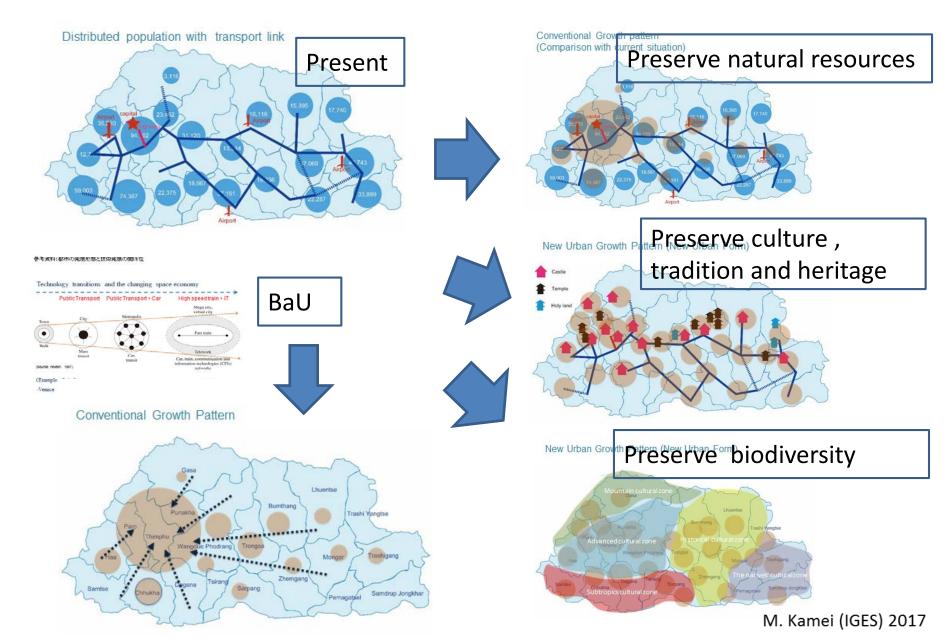
- Nine areas with same weight are defined
- Nation-wide surveys (9,000 sample) in 5 years cycle monitors peoples satisfaction in detail index. At 2015 survey *⁷:
 - Deeply or extensively happy 43.4%, narrowly happy 47.9%, unhappy 8.8%.
 - men> women, urban resident> rural , more educated> less educated tend to be happier
 - Increased satisfaction on services: electricity, tap and sewage water and housing
 - psychological well-being and government performance degraded 2-25% from 2010

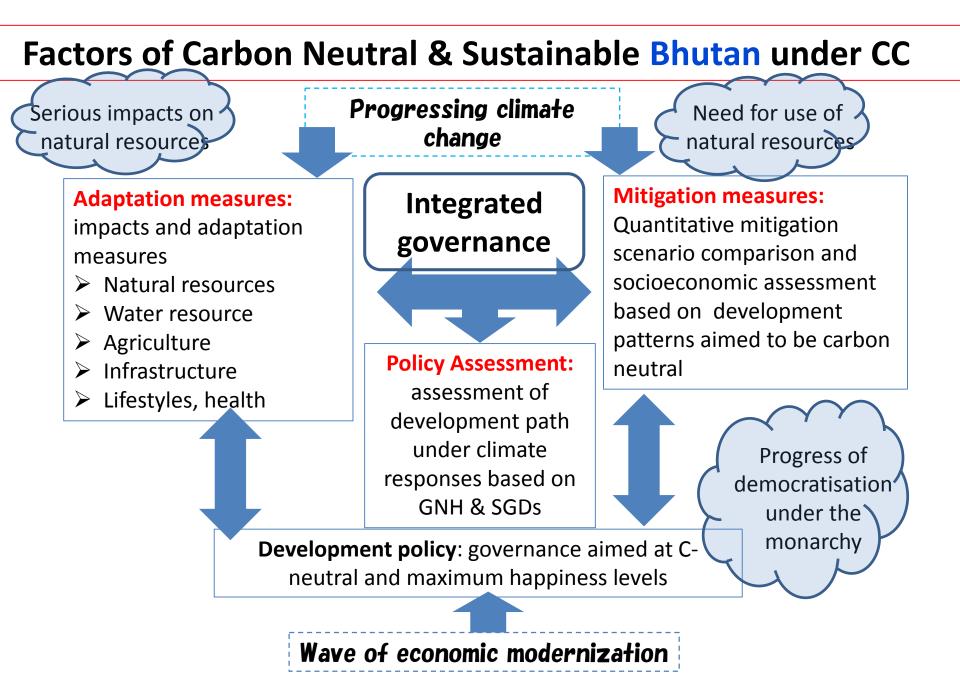
Indices for the 9 domains

Width of a box shows weight	ght given to each index


Psychologicalwellbeing	Life satisfaction	Positive emotion	Negative emotion	Spirituality		
Health	Salf- reported health status days	althy	thy Disability		ntal health	
Time use	Work		Sleep			
Education	Literacy	Schooli	ng Kn	owledge	Value	
Cultural diversity and resilience	Zorig chusm skills	Cultural participation		ak native Inguage	Driglam Namzha	
Good Governance	Political participati	Services Coverna- mance pole- mance				
Communityvitality	Donation (time & money)	Safety	/	mmunity ationship	Family	
Ecological diversity and resilience	Wildlife damage		Urban issues		Responsib -ility to onviron- mont	
Living standards	Income As		Assets		ousing	

Relationship between GHH and development Relationship between GNH and Development path


GNH Index	No. of Pop. /Household	Economy	Transport ation	Energy	Agri- culture	Land-use	Waste	GHG
Psychological Wellbeing	Family structure			Electrifica tion rate				
Health	Age distribution		Walking trip					
Time use		Labor Hour						
Education		Promoting Education						
Cultural diversity & resilience					Domestic productio n rate			
Community vitality	Family structure	Income						
Good governance			Public transporta tion	Electrifica tion rate		Forest Area	Waste manage ment	
Ecological diversity & resilience						Forest Area	Waste manage ment	GHG emissior
Living standard	Family Structure	Income	Modal share					


How to keep local population to preserve natural resources, tradition, heritage and culture : Dynamic & integrated national land-use plan is indispensable

Tokyo has faced many serious problems Need a fundamental transition to the next phase

Land use plan under carbon neutral & Gross National Happiness

Our challenges towards Carbon Neutral Asia

Reality of Asian carbon neutral situation

- GHG/CO2 emission, usage of renewable energy, land-use situation,,,,
- How NDCs and long-term low carbon strategies are integrated into national development plan?,

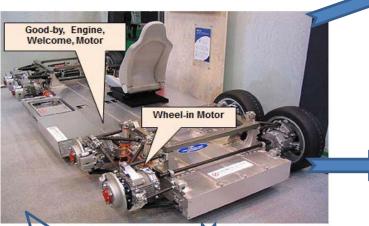
How natural resources are used, preserved, regulated,,,,,?

- Concrete measures: agroforestry, participatory monitoring, national land-use plan, subsidization, response policy to depopulation by urbanization, land-use competition among urbanization and agriculture production, huge dam construction, small size hydro-power, biomass use,,,,,
- Possibility of BECCS (biomass+CCS)

What area research and technology should focus on?

- Climate impacts to natural resources and adaptation
- Carbon cycle, utilization of satellite data
- Carbon neutral pathway
- Economic evaluation, economic measures, carbon pricing
- National land-use plan: how to keep enough population to keep natural resources
- International context: How to give more value to natural resources?

Climate change brought innovation



Shanghai E-bike to ASEAN big market?

infrastructure in Berlin

Easy slow mobilization

Clear Sky

Number of parts decreases by 2/3

Platform of SIM-Drive

Employment decreases by 2/3

New energy-mobility

Morocco

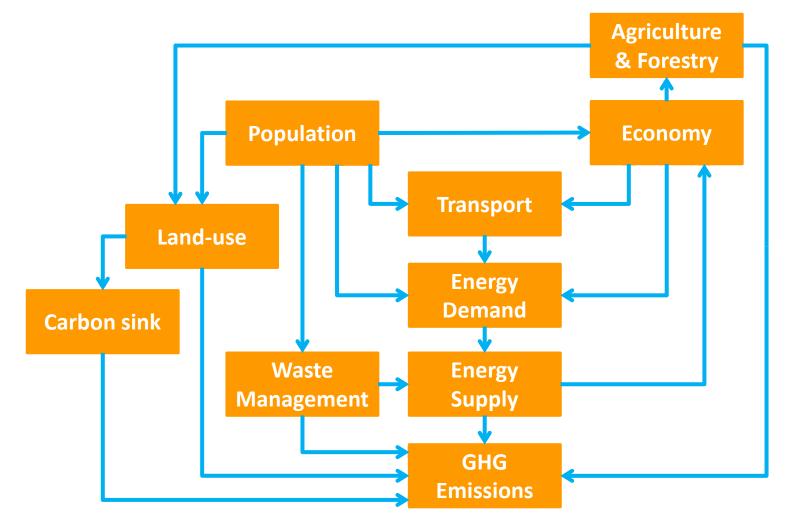
Thank you very much for your attention!

LCS-RNet/LoCARNet Secretariat http://lcs-rnet.org/index.html

c/o Institute for Global Environmental Strategies (IGES) 2108-11 Kamiyamaguchi, Hayama, Kanagawa 240-0115, Japan

E-mail: <u>lcs-rnet@iges.or.jp</u> Fax: +81 (0)46 855 3809

What about Asian countries?


Asia (China, ASEAN, India, Japan,,) :

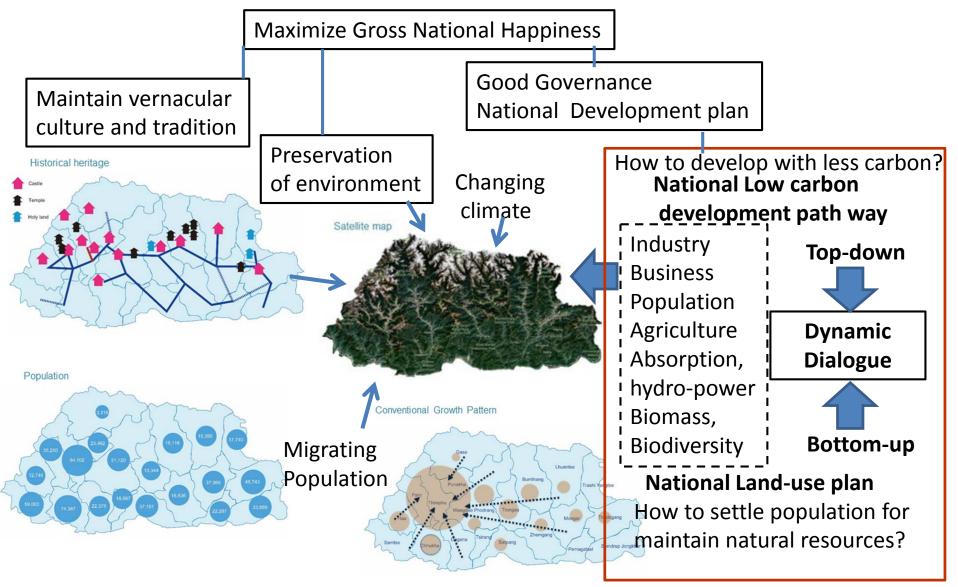
- Half of global emission in 2050 (BaU)
- Center of global economic growth, High investment in infrastructure & industry⇒lock-in to conventional highenergy consuming technologies, in coming next 30-50 years
- Already exceeded 2 ton/capita
- "leapfrogging": new development pathways?
- A good example: China's late comer's advantage
- ➢ Mobil-phone: difficulty in wired telephone, IT age, ⇒No.1 user and producer of mobile phone
- ➢ Renewable energy: vast national territory, low-carbon trends, energy security, air pollution by coal use⇒No.1 in the world producer of renewable energies and devices
- Electric Bike in Shanghai (good engineering capability, engine technology needed, air pollution, potential market in Asia
- Subway in Shanghai: 14 route after International Exhibition in 2010

Bhutan Low-carbon Scenario Model

The model called "Extended Snapshot Tool" simulates future socio-economic activity, transport demand, land-use, waste management, energy demand and supply, agriculture, and GHG emissions and emission reduction contributions.

It was customized in order to consider Bhutan's emission structure.

Bhutan's Natural resource & its management


Infrastructure

How can natural resources be preserved? Importance of national level land- use planning

M. Kamei (IGES) 2017

Impacts by globalizing economy, urbanization and democratization

Current Trend

Economy

- •GDP/cap (2011) US\$ 2,590
- ・Growth rate (2006年~2011) 7-8%/y
- •Unemployment rate 3%,
- •National income: domestic 65%, assistance 35%
- Working Population: Agriculture (subsidized) 69%, 2nd & 3rd industry are still small

Domestic migration

- Increasing population and migration to urban area, especially to Thimphu
- •With increasing investment on infrastructure and industry, air/water /waste pollution increasing in urban area. Stable safe drinking water provision is at risk.
- Country side suffers from human- animal conflict

Literacy

- Literacy in young generation is 95%, elder than 65 is 20%. School education performed by English.
- •Electricity is provided 97% of household, TV75%, mobile 98%, which deliver world newest information to home

Governance: Development Plan

Democratization

Maximize GNH:

- Sustainable and equitable social and economic development
- Preservation of natural environment
- Maintenance/promotion of culture/ tradition
- Good governance

Development Plan:

- High value, low volume
 - High-tech, Medical industry, Education business,
- Self resilience & full employment.
 Enhance variety of export industry under "Brand Bhutan":
- Carbon Neutral policy

NDC for CC

- Land use plan:
- Decentralization policy, Dry port

Can Bhutan develop with full satisfaction of peoples by preserving it vernacular culture and affluent natural resources? A big challenge.

Characteristics of Old and New "Mission-Oriented" Projects

Source: Soete and Arundel (1993, p. 51)

Old: Defence, Nuclear and	New: Low Carbon Technologies
Aerospace	
The mission is defined in terms of the	The mission is defined in terms of
number of technical achievements with	economically feasible technical solutions
little regard to their economic feasibility	to particular environmental problems.
The goals and the direction of	The direction of technical change is
technological development are defined in	influenced by a wide range of actors
advance by a small group of experts	including the government, private firms
	and consumer groups
Centralised control within a government	Decentralised control with a large number
administration	of involved agents
Diffusion of results outside the core of	Diffusion of the results is a central goals
participants is of minor importance or	and is actively encouraged
actively discouraged	
Limited to a small group of firms that can	An emphasis on the incrementalist
participate owing to the emphasis on a	development of both radical and
small number of radical technologies	incremental innovations in order to permit
	a large number of firms to participate
Self-contained projects with little need for	Complementary policies vital for success
complementary policies and scant	and close attention paid to coherence with
attention paid to coherence	other goals

Can Bhutan leapfrog? Some leading runners, leverage, tailwind

		_	_
Issue	Country	Internal factors	External factors
Industrial structure	<u>India</u> : '90s IT industry, Bangalore	Education/ human resources	Soft technology start Globalization
Energy	<u>Japan</u> : '70s	Technology	Oil crisis
structure	Low energy intensity	Rapid growth /pollution	Energy security
Bioenergy	<u>Brazil</u> : '70s	Sugar cane	Oil crisis
	Bioethanol	Scarce oil	Energy security
Information	<u>China</u> : '00s-	Rapid economic growth, poor telephone-grid	IT technology
technology	Mobile phone		globalization
Renewable	<u>China</u> : '00s	Big land area	Decarbonizing trend
energy / EV	Wind/solar energy/EV	Technology/ pollution	Climate change
Develop- ment path?	Bhutan ~2050s High dependence to external fund High transportation cost Inadequate infrastructure	Political stability Natural and Pristine environment Competitively pricing energy Nation of GNH Wide use of English language * 8	Carbon neutral world International cooperation climate finance capacity building

29

"Asian Low-Carbon Society Scenario Development Study" FY2009-2013, funded by Global Environmental Research Program, MOEI

	1	2	3	4	5
POWER					
Renewable power (incl. hydro)	China	United States	Brazil	Germany	Canada
Renewable power (not incl. hydro)	China	United States	Germany	Japan	India
Renewable power capacity <i>per capita</i> (among top 20, not including hydro ³)	Denmark	Germany	Sweden	Spain	Portugal
Biopower generation	United States	China	Germany	Brazil	Japan
O Geothermal power capacity	United States	Philippines	Indonesia	Mexico	New Zealand
➢ Hydropower capacity ⁴	China	Brazil	United States	Canada	Russian Federat
➢ Hydropower generation ^₄	China	Brazil	Canada	United States	Russian Federat
CSP CSP	Spain	United States	India	Morocco	South Africa
😳 Solar PV capacity	China	Germany	Japan	United States	Italy
😳 Solar PV capacity per capita	Germany	Italy	Belgium	Japan	Greece
Wind power capacity	China	United States	Germany	India	Spain
Kind power capacity per capita	Denmark	Sweden	Germany	Ireland	Spain
HEAT					
Solar water heating collector capacity ⁵	China	United States	Germany	Turkey	Brazil
Solar water heating collector capacity per capita ⁵	Austria	Cyprus	Israel	Barbados	Greece
O Geothermal heat capacity 6	China	Turkey	Japan	Iceland	India
O Geothermal heat capacity per capita 6	Iceland	New Zealand	Hungary	Turkey	Japan

Challenge 6: How to design development path fit to transforming world?

Current Trend

Economy

- •GDP/cap (2011) US\$ 2,590
- ・Growth rate (2006年~2011) 7-8%/y
- •Unemployment rate 3%,
- •National income: domestic 65%, assistance 35%
- Working Population: Agriculture (subsidized) 69%, 2nd & 3rd industry are still small

Domestic migration

- Increasing population and migration to urban area, especially to Thimphu
- •With increasing investment on infrastructure and industry, air/water /waste pollution increasing in urban area. Stable safe drinking water provision is at risk.
- Country side suffers from human- animal conflict

Literacy

- Literacy in young generation is 95%, elder than 65 is 20%. School education performed by English.
- •Electricity is provided 97% of household, TV75%, mobile 98%, which deliver world newest information to home

Governance: Development Plan

Democratization

Maximize GNH:

- Sustainable and equitable social and economic development
- Preservation of natural environment
- Maintenance/promotion of culture/ tradition
- Good governance

Development Plan:

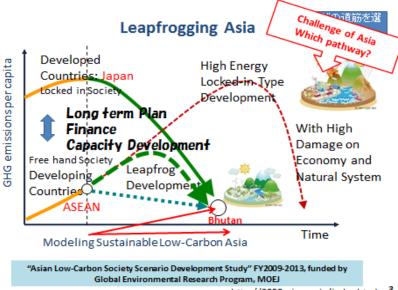
- High value, low volume
 - High-tech, Medical industry, Education business,
- Self resilience & full employment.
 Enhance variety of export industry under "Brand Bhutan":
- Carbon Neutral policy

NDC for CC

- Land use plan:
- Decentralization policy, Dry port

Can Bhutan develop with full satisfaction of peoples by preserving it vernacular culture and affluent natural resources? A big challenge.

Thank you very much for your attention!



Bhutan's leapfrogging challenge in energy access aiming at carbon-neutral society

Shuzo Nishioka/Miho Kamei/Tomoko Ishikawa (IGES) Kei Gomi (NIES), Yuki Ochi (E-Konzal)

- Lately coming developing countries can not (needs not to) track same hi-carbon development pathway to carbon neutral world
- How natural resources dependent development countries challenge to carbon neutral world and confront to energy access issue?
- Can they create alternative development pathway, technologically, economically and socially, by leapfrogging beyond high-energy intensive modern society, taking this transition as leverage?
- What impacts climate change and responding strategies give to countries' sustainable development pathway?
- Can case of Bhutan be transferable to other developing countries?

Challenge 2: How to introduce appropriate technology into its development path? Biomass, pollution, electricity & absorption

- Total energy demand in 2005 (& 2040 baseline projected*) 387(730) 10³toe, per capita 0.5(0.75) toe/Cap.(almost same as India)
- Supply: fuel wood 60% (22%), hydro-power13%(44%), imported gasoline/ diesel/kerosene 20%(25%), coal 7% (6%) ⇒self sufficiency 3/4 (2/3). Accessibility to electricity is 97%.
- Consumption: residential: rural 32%(14%), urban 4%(15%), energy intensive industry 9%(17%), other industry 12%(25%), tertiary industry 10%(17%), agriculture/forestry 14%(1%), Transportation 14%(12%)
- In 2040, total energy increases 2.4 times, fuel wood stable, hydro-power increases 8 times, fossil fuel increases 2.6 times ⇒self -sufficiency decreases
- **Absorption:** Forestry, coverage of 70% of land area (National target: 60%) keeps absorption.
- Biomass : fuel wood for cooking and warming causes indoor/urban air pollution.
- Bio-diversity: Half of land area designated as national park, preserving bio- diversity, and contributing to eco-tourism.

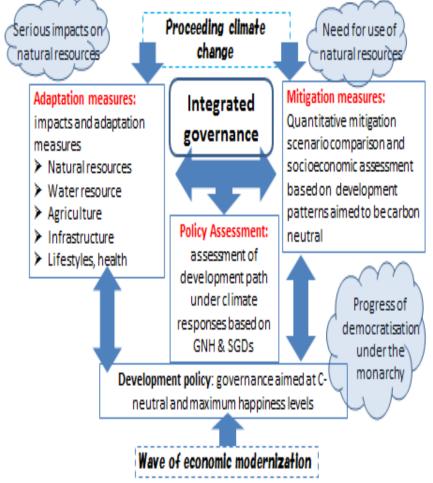
Can Bhutan leapfrog? Some leading runners, leverage, tailwind

			_
Issue	Country	Internal factors	External factors
Industrial structure	<u>India</u> : '90s IT industry, Bangalore	Education/ human resources	Soft technology start Globalization
Energy	<u>Japan</u> : '70s	Technology	Oil crisis
structure	Low energy intensity	Rapid growth /pollution	Energy security
Bioenergy	<u>Brazil</u> : '70s	Sugar cane	Oil crisis
	Bioethanol	Scarce oil	Energy security
Information	<u>China</u> : '00s-	Rapid economic growth,	IT technology
technology	Mobile phone	Weak telephone-grid	Gobalization
Renewable	<u>China</u> : '00s	Big land area	Decarbonizing trend
energy / EV	Wind/solar energy/EV	Technology/ pollution	Climate change
Develop- ment path?	Bhutan ~2050s High dependence to external fund High transportation cost Inadequate infrastructure	Political stability Natural and Pristine environment Competitively pricing energy Nation of GNH Wide use of English language * 8	Carbon neutral world International cooperation climate finance capacity building

35

"Asian Low-Carbon Society Scenario Development Study" FY2009-2013, funded by Global Environmental Research Program, MOEI

Bhutan: What affects carbon neutral path and energy access?


External factor : climate change

- Change of precipitation and hydrology: impact to capacity and stability of hydropower, Disaster: land slide, soil erosion, burst of glacier lake
- Degradation of : forest /soil/agricultural land ⇒carbon sequestration & biomass capacity
- Paris agreement
- Wave of globalization

Internal factor: development path under democratization and globalization

- Democratization: high educational level/ informational environment
- Industrialization/ Globalisation:
- Urbanization/ depopulation in rural area
- Governance under GNH concept

Factors of Carbon Neutral & Sustainable Bhutan under CC

Thank you very much for your attention!

LCS-RNet/LoCARNet Secretariat http://lcs-rnet.org/index.html

c/o Institute for Global Environmental Strategies (IGES) 2108-11 Kamiyamaguchi, Hayama, Kanagawa 240-0115, Japan

E-mail: <u>lcs-rnet@iges.or.jp</u> Fax: +81 (0)46 855 3809

Scenario assumptions

Two preliminary scenarios were developed: BaU (targeted economic growth will occur without low-carbon measures) and CM (targeted economic growth with low-carbon measures)

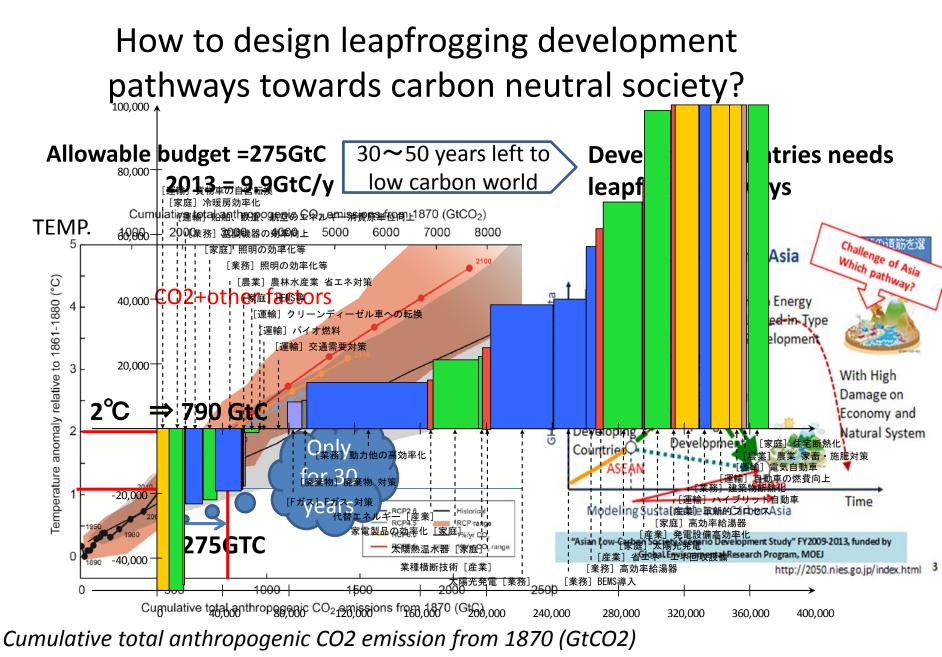
		BaU	CM1				
Demosration	Population	Increase	Same as BaU				
Demography	Household	HH size decreased	Same as BaU				
	Agriculture	Increase production as population increase	Yield improved				
	Manufacturing	Increase as planed target (by 2020) Growth rate declines after 2020	Same as BaU				
Economy	Construction	Increase as planed target (by 2020) Growth rate declines after 2020	Same as BaU				
	Services, etc	Increase	Same as BaU				
	Power	Hydro: increase as planed	Hydro: Increase as planed Other RE for domestic supply				
Transport		Provate car increases as income increase	Private car increases as income increase Share of bus is larger than BaU				
	Freight	Increase as economic growth	Increase as economic growth				
	Res/Com Energy service	Increase as income increase & urbanization	Increse, but growth rate is lower than BaU				
	Res/Com/Ind effficiency	Same as base year	Improved				
	Transport technology	Same as base year	Fuel cost improved EV introduced				
Energy	Demand side fuel composition	Same as base year	Reduce fuel wood, increase electricity				
спегду	Power supply	Composition and efficiency: same as base year	Efficiency improved PV, Biomass, Small hydro introduced				
	Fosil fuel	Composition and efficiency: same as base year Efficiency improved					
	Dispersed systems	-	District heat supply (biomass) Smart grid (for mountain villeges)				
	Settlement	Density same as base year	Density higher than base year				
Land use	Cropland	Yield same as base year	Yield improved	38			
	Forestland	Same as base year	Increase managed forest land				

Main points

- Two scenarios by 2050 were developed with current information and existing future plans.
- In Bhutan, GHG emission will exceeds carbon sink in 2050 in BaU (business as usual) scenario.
- Hydro power will always be main energy source, however, oil demand will increase by 5 times in 2050 in BaU.
- GHG emission can be reduced about 22% in CM (counter measures) scenario. More than half of the emission reduction is by forest management.
- The projection is solely based on currently available data and plan. If the information is updated, the result will differ.

Indices for the 9 domains

Width of a box shows weight given to each index


Psychological wellbeing	Life satisfaction					ative Sp		irituality	
Health	Self- reported health status days			Disability		/	Me	ntal health	
Time use		Work					Sleep		
Education		Literacy		Schooling		Kno	owledge	Value	
Cultural diversity and resilience	Zorig	<i>chusm</i> skills	Cultur	Cultural participation		Speak native language		Driglam Namzha	
Good Governance	Poli	itical participatic	on Servi		ices		Governa- nce perfo- rmance		
Community vitality		onation e & money)	Safety		Community relationship		Family		
Ecological diversity and resilience	V	Vildlife damage	Urban i		n issues		Responsib -ility to environ- ment Ecologic- al issues		
Living standards		Income	Assets			Housing			

GHG emissions in BaU scenario

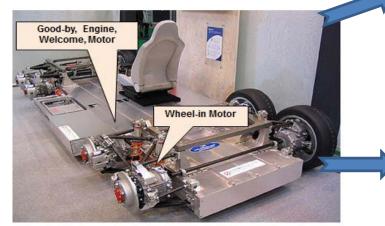
By sectors, freight transport has a large share of GHG emissions. However, this is caused by estimation of current energy consumption from indirect data. If more detailed information of fuel consumption is obtained, it is likely to change.

In BaU scenario, per capita GHG emission (without LULUCF) will be 5.9tCO2eq in 2050. This is more than double from current level.

		BaU				
ktCO2eq		2012	2020	2030	2040	2050
Energy	Residential	27.8	45.0	75.7	128.8	184.6
	Commercial	30.2	76.5	204.1	451.8	830.5
	Industry	174.9	246.7	376.5	547.4	738.8
	Ps. Transport	85.1	160.0	226.8	298.0	376.0
	Fg. Transport	261.0	573.1	1,020.1	1,563.2	2,038.2
	(subtotal)	578.9	1,101.3	1,903.2	2,989.2	4,168.1
LULUCF	LU change	-6,072.8	-6,072.8	-6,072.8	-6,072.8	-6,072.8
Agriculture		1,000.0	1,136.1	1,244.6	1,351.3	1,440.9
Waste						
Industrial proc	cess	238.0	280.5	341.9	408.6	478.9
Total		-4,255.9	-3,554.9	-2,583.1	-1,323.7	15.2
tCO2eq						
Per capita em	issions (w/o LULUCF)	2.5	3.1	3.9	4.9	5.9

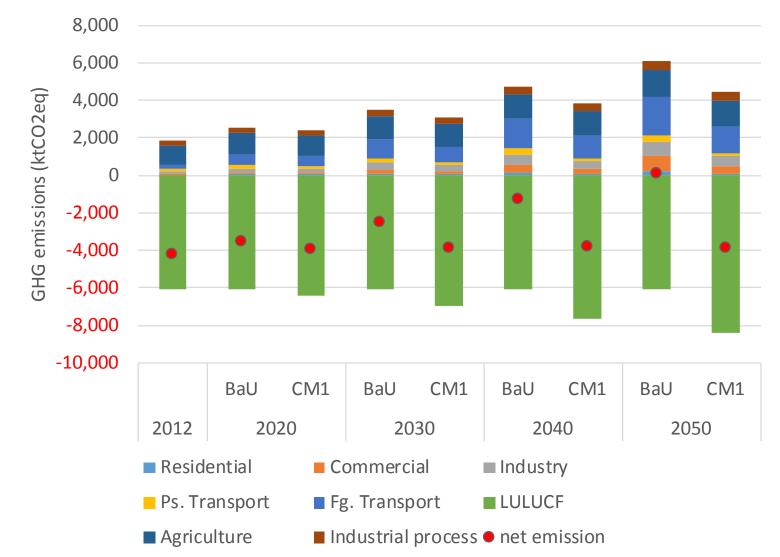
(IPCC AR4 and Emori, NIES)

Climate change brought innovation


Easy slow mobilization

New energy-mobility infrastructure in Berlin

Platform of SIM-Drive


Morocco

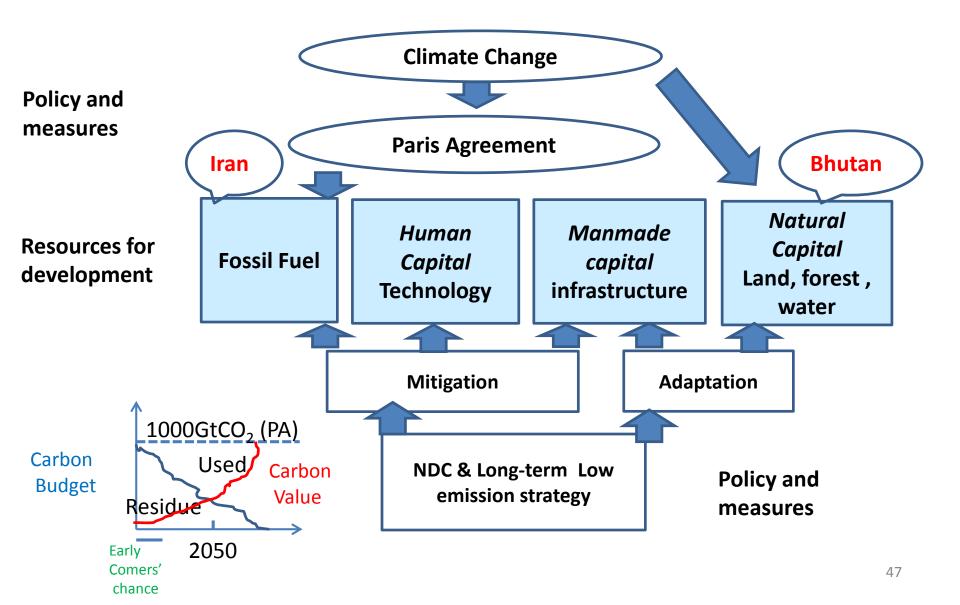
Carbon neutral pathway of Bhutan: (Preliminary result)

Net GHG emission become slightly POSITIVE in 2050 BaU. Low-carbon measures are necessary in order to keep being a net NEGATIVE emission country.

How does Transition to De-carbonized Society Benefit Challengers?

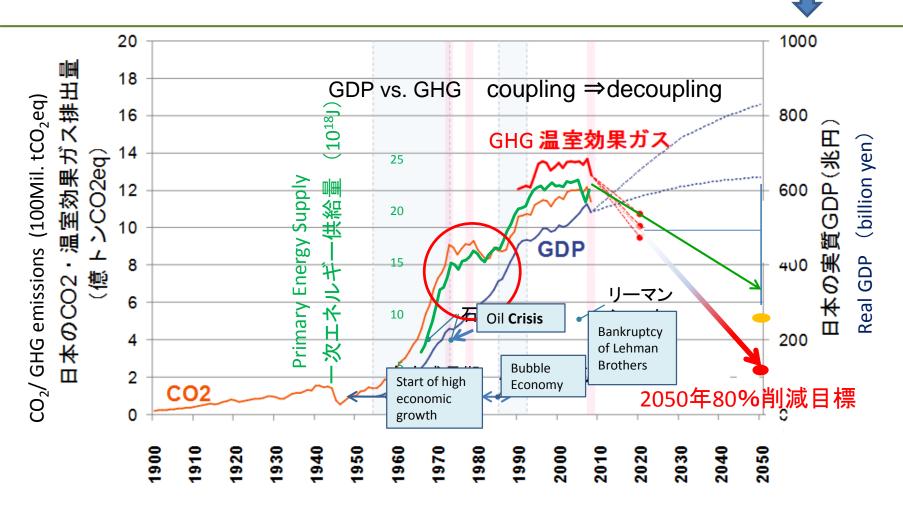
> Decarbonizing : More than co-benefit!

- It is Development itself.
- It is "must": nature's logic: limited carbon budget, carbon value up, promised market, early comers take all
- World wide system change: challengers opportunity

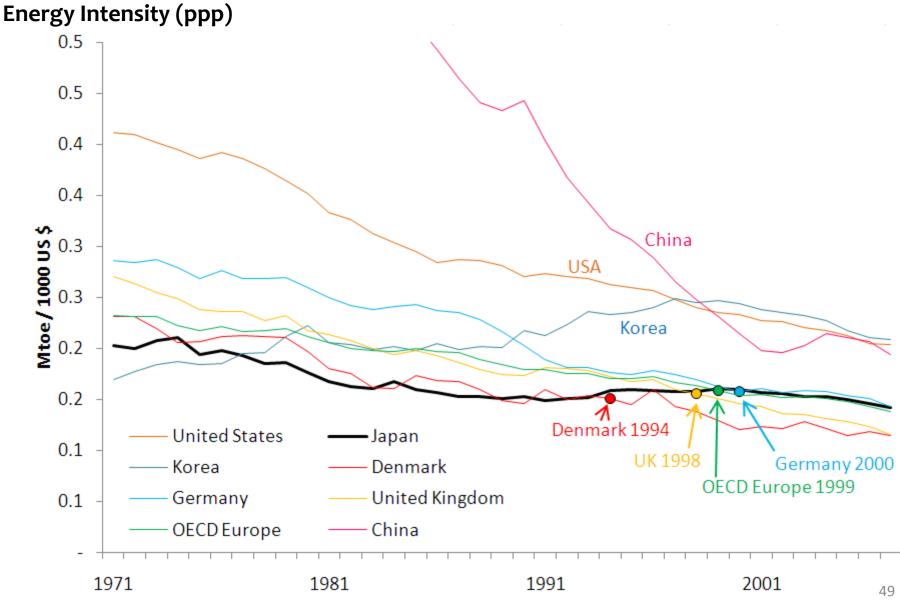

Similarity between Japan at Oil Crisis (1970's) & China at Climate Change (2010's)

- > Energy security: growing consumption, low self-sufficiency rate, rapid oil price up
- Economy entering mature stage
 - Growth rate leveling off
 - Industrial structure: heavy industry to manufacturing
 - Welfare : Serious pollution: industry to urban
 - Urbanization (and rural depopulation)
- Japan' current challenges
 - Aged society: social security & its finance, local infrastructure
 - Conservation of local society &natural resources: aged population & infrastructure,
 - Long-term financial deficit by short sighted economic stimulation: Long-term vision for social and health security and inter-generational equity
 - Can keep competence in technology in shifting paradigm?
 - Political readership/ Political will/ Long-term development strategy

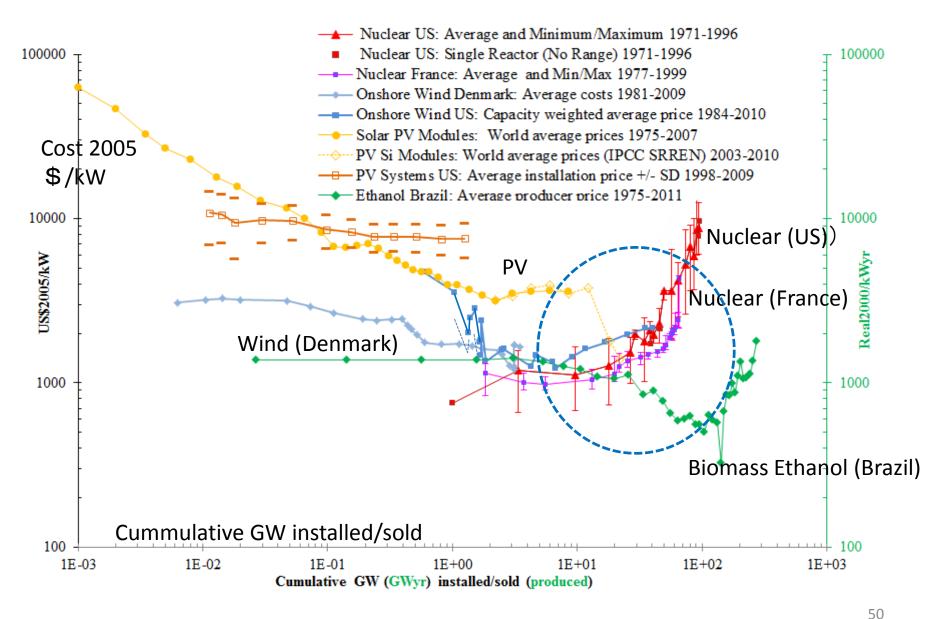
What are the co-benefits of policies for stabilizing climate? Climate change and Development


- > More than co-benefit. Decarbonizing transition= development itself
 - nature's logic "must": "Promised market",
 - ➢ Economic logic : Limited carbon budget ⇒ "Carbon value" increase
 - Contribute to SDGs, if well designed/implemented.
 - > Major elements of development:
 - Economy and industrial structure: energy intensive industry to change / electricity major secondary energy/electric hydrogen car/ pollution control
 - Energy security: land based energy/renewable energies
 - > Natural resources: (forestry& soil)conservation: for the absorption of CO2
 - Infrastructure: Urban system (transportation/ building/ information)
 - Finance: a few percent of additional investment (in Japan's case)
 - > Knowledge resource: technology, human resource, education
- use it in win-win relation
 - World scale system change: Huge niche in technology and social system
 - > Equal start line: yet not locked-in society rather advantageous (case of mobile)
 - Good opportunities to push development elements forwards simultaneously
 - Early comers take all : China in solar panel market, wind power, EV?

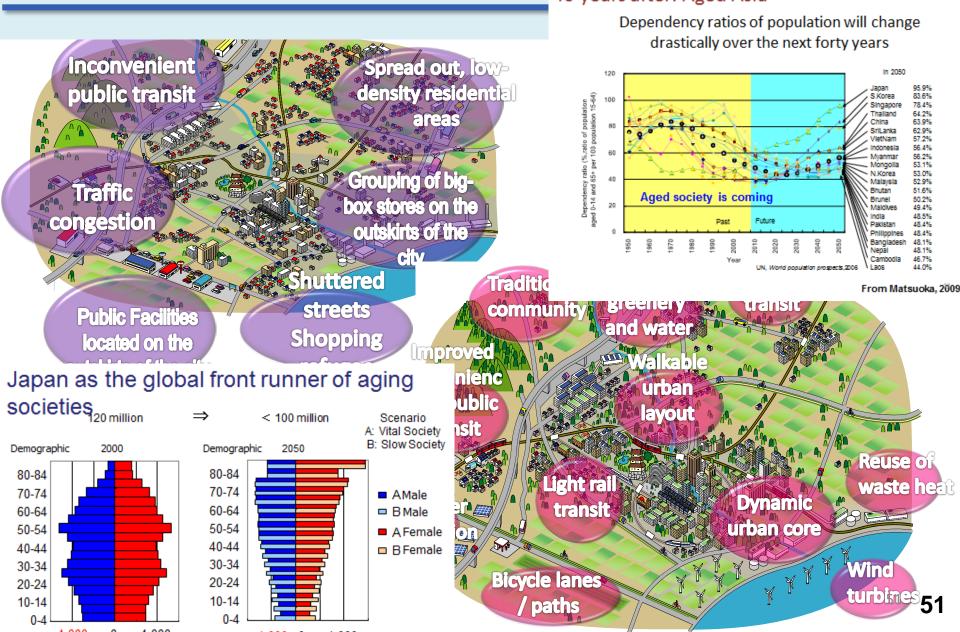
Climate Change: Impact to Resources for Development

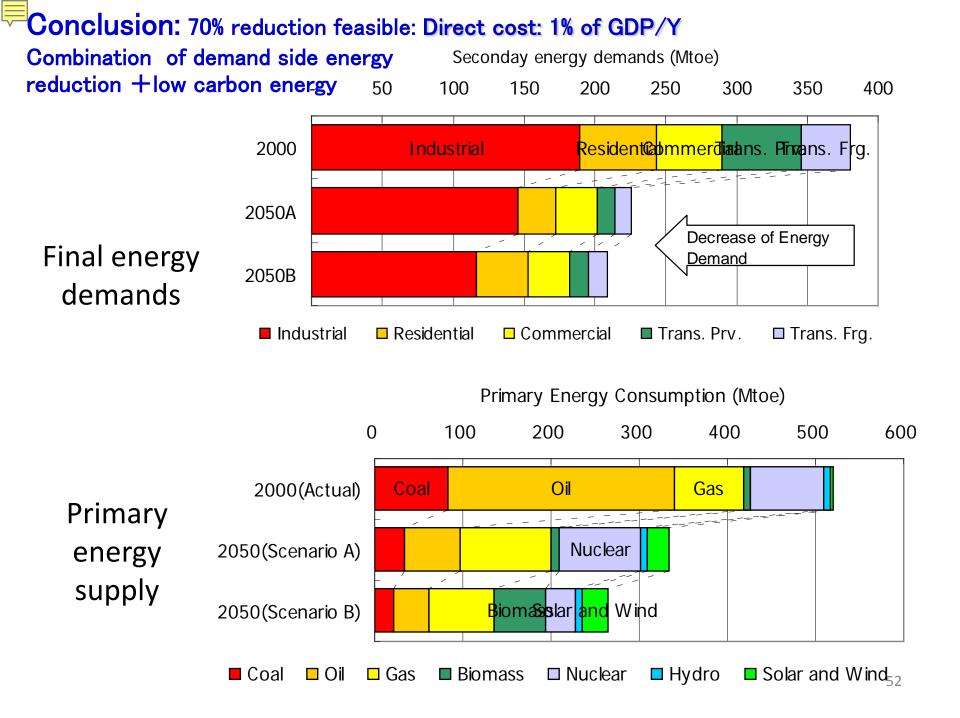


Japan 1970's in Oil crisis vs. China 2010's in climate change: Transient period to mature economy


)GDPの将来値は国立環境研究所 脱温暖化2050プロジェクト A・Bシナリオの想定値

Glory of the past "Japan as saving-energy frontrunner"


Original Data: IEA (2009) CO2 Emissions from Fuel Combustion - Highlights


Post Fossil Energy Supply Technologies Cost Trends

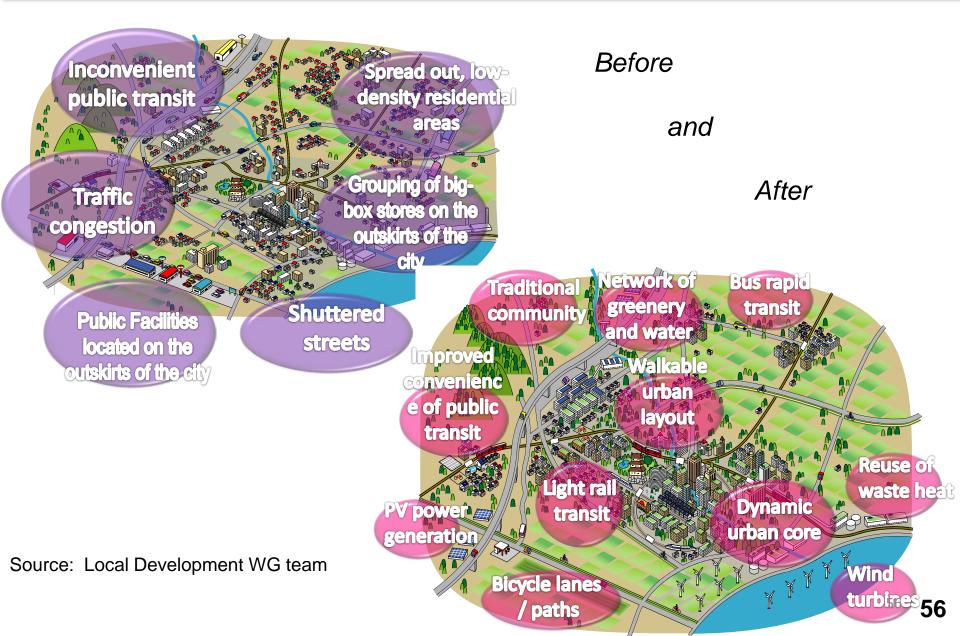
Source: Grubler/Wilson, Cambridge University Press, 2014

Japan now: hi-energy locked-in and aged society Now restoring to compact city 40 years after: Aged Asia

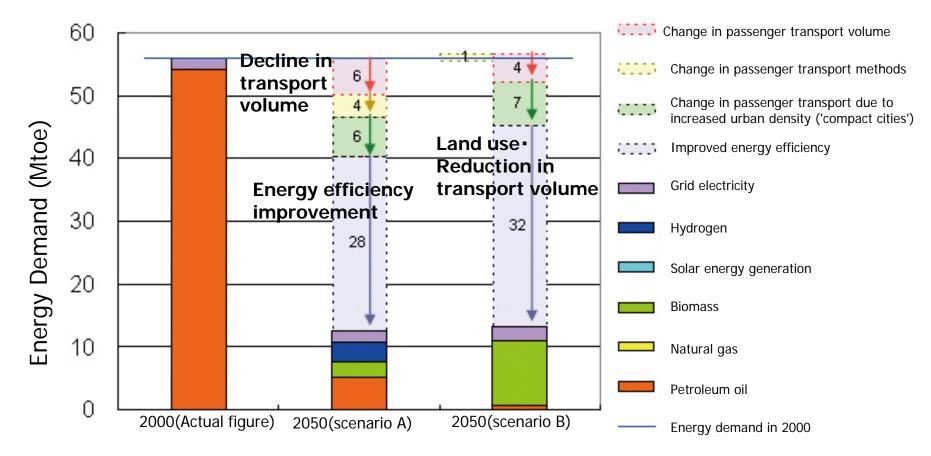
How does Transition to De-carbonized Society Benefit Challengers?

- Decarbonizing : More than co-benefit!
 - It is Development itself.
 - It is "must": nature's logic: limited carbon budget, carbon value up, promised market, early comers take all
 - World wide system change: challengers opportunity
- Ex. Japan's experience at Oil Crisis (1970's)
 - Energy security: oil price up
 - Economy entering mature stage
 - Growth rate leveling off
 - Industrial structure: de-heavy industry to manufacturing
 - Welfare : Serious pollution: industry to urban
 - Urbanization (and rural depopulation)
- Japan' current challenge
 - Political readership/ Political will
 - Aged society: social security & its finance, local infrastructure
 - Conservation of local society &natural resources: aged population & infrastructure,
 - Long-term financial deficit by short sighted economic stimulation: inter-generational equity

Similarity between Japan in 1970's and China 2010's How worldwide big transition benefit to challenger?

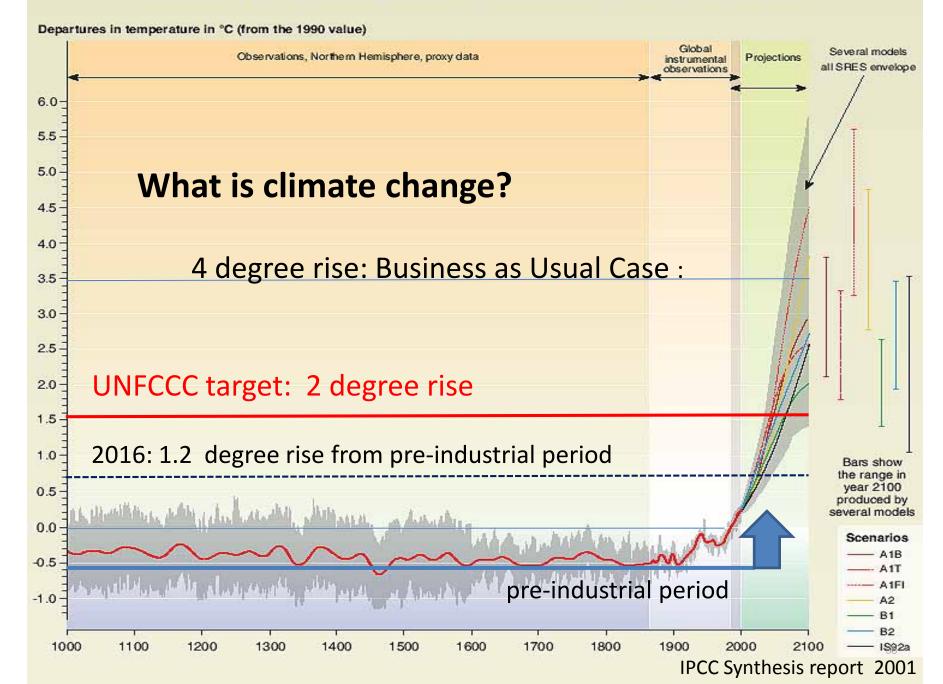

	Japan in 1970's	China in 2010's
Cause	Oil crisis: Oil production control by OPEC	Climate crisis: Total allowable carbon emission control by Paris Agreement
Threat	Sudden and huge increase of oil price and its fluctuation 1\$ ⇒5-7\$⇒20\$ ⇒150\$	Increase of climate change Limited and decrease of remaining 'carbon budget'⇒Carbon values (price) increases as budget decreases
Final solution	Bargain between supply side and demand side	Zero emission (No bargain between human being and nature)
Challenge	How to transform to energy saving society to have advantage in bargain	How to transform to decarbonized society within a few decades
External situation	 saving energy technology required especially to oil scarce countries 	 Energy and its associated system change required (fossil to RNE) All nations equally required transformation to unexperienced de-carbonized world (same start line)
Internal situation	 Small land area No oil reserve at all Entering into growing economy (5% ⇒10%) Arising pollution problem Strong technological capacity 	 huge land area for solar energy and CO2 absorption entering into maturing economy[10% ⇒7%) Arising pollution problem Increasing energy consumption under insufficient supply Leading REN technology/less locked-in/huge investment Late comer's advantage in technology
Responds	 Development of saving energy technology Diversify energy type & import countries (industry, home electricity, automobile, behavior) investment decision based on high oil price 	 strong political will and governance for energy security and climate response Carbon Pricing policy already started as carbon market
benefit	 Oil import decrease: energy security up, improve international financial balance degradation of pollution leading world fuel efficient/ clean car & energy saving technology 	 Energy security up: nationally and locally Leader of RNE technology and system pollution reduction 54

What about Asian developing countries?


Asia (China, ASEAN, India, Japan,,) :

- Half of global emission in 2050 (BaU)
- Center of global economic growth, High investment in infrastructure & industry⇒lock-in to conventional highenergy consuming technologies, in coming next 30-50 years
- Already exceeded 2 ton/capita
- "leapfrogging": new development pathways?
- A good example: China's late comer's advantage
- ➢ Mobil-phone: difficulty in wired telephone, IT age, ⇒No.1 user and producer of mobile phone
- Renewable energy: vast national territory, low-carbon trends, energy security, air pollution by coal use >> No.1 in the world producer of renewable energies and devices
- Electric Bike in Shanghai (good engineering capability, engine technology needed, air pollution, potential market in Asia
- Subway in Shanghai: 14 route after International Exhibition in 2010

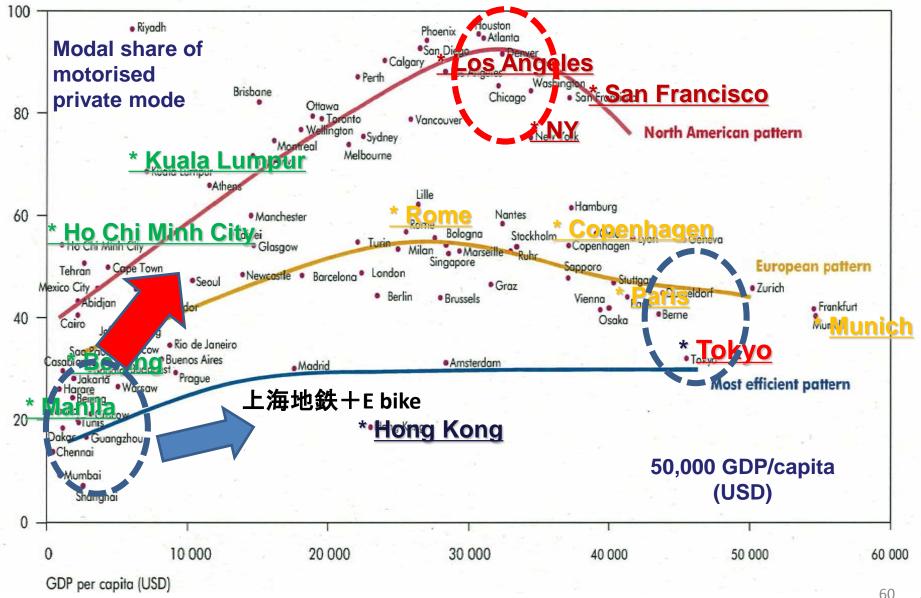
2050 vision of compact city and rural life for aged society


Example: Passenger transport sector can achieve 80% reduction in energy demand via suitable land use & improved energy efficiency

Change in passenger transport volume: reduction in total movements due to population decline Change in passenger transport methods: modal shift using public transport system (LRT etc.) Change in passenger transport due to increased urban density ('compact cities'): reduced travel distance due to proximity of destination Improved energy efficiency: improvements in automobiles & other passenger transport devices (hybrids, lightweight designs etc.)

Variations of the Earth's surface temperature: years 1000 to 2100

Major Decision of Paris Agreement at COP21 (2015)


- Set target of less than 1.5/ 2.0 degree temperature rise from pre-industrial period
- All parties participate to take action under NDC

⇒Transform to Zero-emission society by the end of this

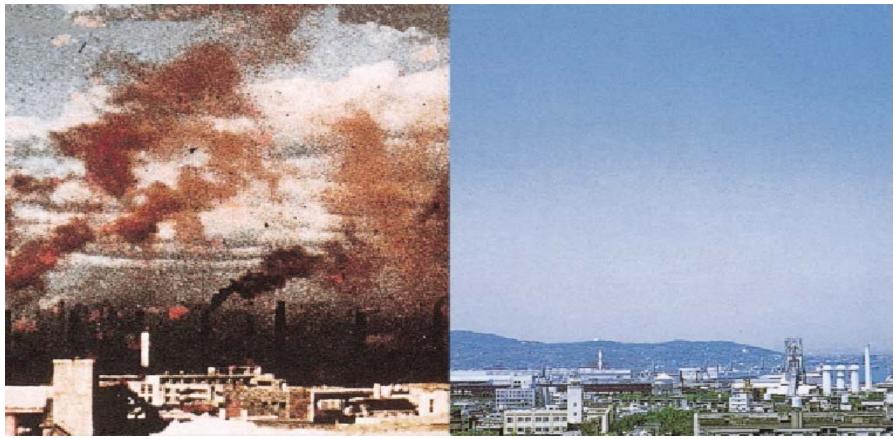
century

- Strengthen cooperation for capacity building in mitigation and adaptation
- Mobilize stakeholders in all levels to act immediately

Co-benefit of prioritizing public transportation system for safe, punctual, clean and efficient mobilization

Source: IEA (2008)

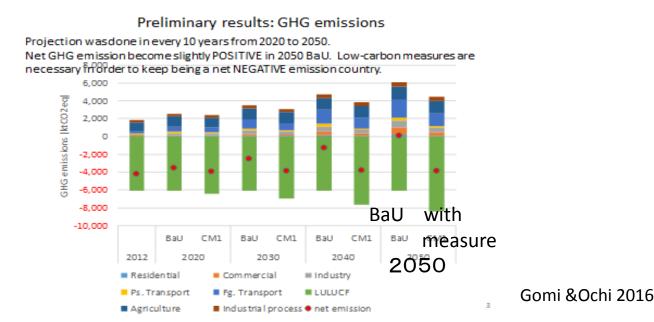
60



Implication of 2 °C target to countries

- UNFCCC agreed to limit temperature less than 2°C increase, avoiding dangerous climate change(Article 2).
- IPCC report : a path to halve the current GHG emissions by 2050 is reasonable in order to attain this goal.
- When halved GHG emissions in 2050 is allocated equally, per capita CO2 emissions is about 2 tonCO₂/ capita
- Currently: about 5ton world average (Japan 10t, US 19t, China 5.5t, Iran 5.4t)
- Significant reduction is essential for all countries, including developing countries
- Developing countries:
- Difficult to follow high energy-dependent technologies
- Need their own unique development path, quite innovative one fit for this huge transition..

Co-benefit of low carbon development


Case of City of Kita-Kyushu: Before and after 1970s'transition : Switch from coal to oil & gas, improve energy efficiency to cope with oil crisis and innovation in pollution control technology

The atmosphere in Kitakyushu, Japan: before and after the clean up (SOE2000).

Nature dependent Bhutan*3*4

- Population: 0.8 Million (2015: WB) Area: 40, 000km² (half of Island of Ireland)
- GDP/cap. US\$ 2532 (PPP US\$ 7,653) Foreign assistance shares 1/3 of national revenue
- Food security: Rice, livestock & vegetables are self sufficient (under subsidy)
- Energy almost based on Biomass (60% of total energy consumption) and Hydropower, (13%) : imported oil for cars and industry (Cement, Ferro-alloy)
- Hydropower: domestic demand + export to India (account up nearly 1/4 of national revenue). More than 10 times potential of present capacity
- Already carbon minus (absorbing) & declare to be Carbon Neutral country (INDC: 2015) tCO₂/Cap: 2.9 (2005) ⇒ BaU 4.9 (2040)

63

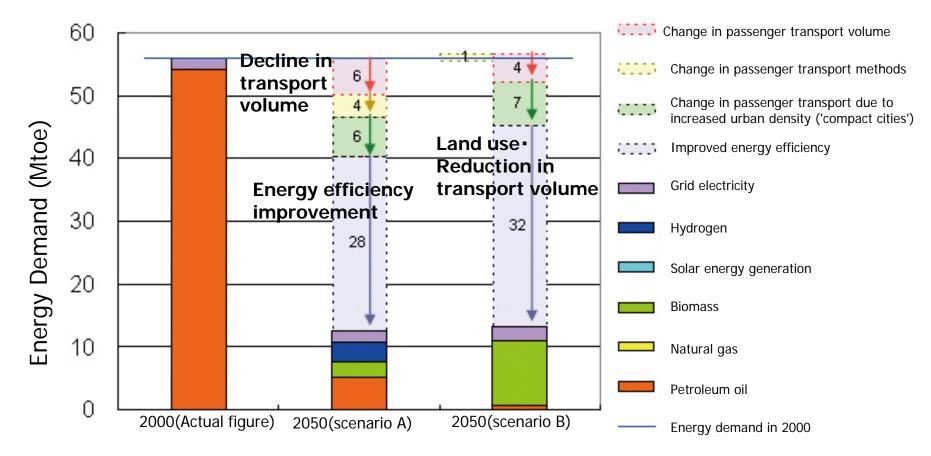
How does Transition to De-carbonized Society Benefit Challengers?

- Decarbonizing : More than co-benefit!
 - It is Development itself.
 - It is "must": nature's logic: limited carbon budget, carbon value up, promised market, early comers take all
 - World wide system change: challengers opportunity
- > Ex. Japan's experience at Oil Crisis (1970's)
 - Energy security: oil price up
 - Economy entering mature stage
 - Growth rate leveling off
 - Industrial structure: de-heavy industry to manufacturing
 - Welfare : Serious pollution: industry to urban
 - Urbanization (and rural depopulation)
- Japan' current challenge
 - Political readership/ Political will
 - Aged society: social security & its finance, local infrastructure
 - Conservation of local society &natural resources: aged population & infrastructure,
 - Long-term financial deficit by short sighted economic stimulation: inter-generational equity

Similarity between Japan in 1970's and China 2010's How worldwide big transition benefit to challenger?

	Japan in 1970's	China in 2010's
Cause	Oil crisis: Oil production control by OPEC	Climate crisis: Total allowable carbon emission control by Paris Agreement
Threat	Sudden and huge increase of oil price and its fluctuation 1\$ ⇒5-7\$⇒20\$ ⇒150\$	Increase of climate change Limited and decrease of remaining 'carbon budget'⇒Carbon values (price) increases as budget decreases
Final solution	Bargain between supply side and demand side	Zero emission (No bargain between human being and nature)
Challenge	How to transform to energy saving society to have advantage in bargain	How to transform to decarbonized society within a few decades
External situation	 saving energy technology required especially to oil scarce countries 	 Energy and its associated system change required (fossil to RNE) All nations equally required transformation to unexperienced de-carbonized world (same start line)
Internal situation	 Small land area No oil reserve at all Entering into growing economy (5% ⇒10%) Arising pollution problem Strong technological capacity 	 huge land area for solar energy and CO2 absorption entering into maturing economy[10% ⇒7%) Arising pollution problem Increasing energy consumption under insufficient supply Leading REN technology/less locked-in/huge investment Late comer's advantage in technology
Responds	 Development of saving energy technology Diversify energy type & import countries (industry, home electricity, automobile, behavior) investment decision based on high oil price 	 strong political will and governance for energy security and climate response Carbon Pricing policy already started as carbon market
benefit	 Oil import decrease: energy security up, improve international financial balance degradation of pollution leading world fuel efficient/ clean car & energy saving technology 	 Energy security up: nationally and locally Leader of RNE technology and system pollution reduction 65

What about Asian developing countries?


Asia (China, ASEAN, India, Japan,,) :

- Half of global emission in 2050 (BaU)
- Center of global economic growth, High investment in infrastructure & industry⇒lock-in to conventional highenergy consuming technologies, in coming next 30-50 years
- Already exceeded 2 ton/capita
- "leapfrogging": new development pathways?
- A good example: China's late comer's advantage
- ➢ Mobil-phone: difficulty in wired telephone, IT age, ⇒No.1 user and producer of mobile phone
- Renewable energy: vast national territory, low-carbon trends, energy security, air pollution by coal use >> No.1 in the world producer of renewable energies and devices
- Electric Bike in Shanghai (good engineering capability, engine technology needed, air pollution, potential market in Asia
- Subway in Shanghai: 14 route after International Exhibition in 2010

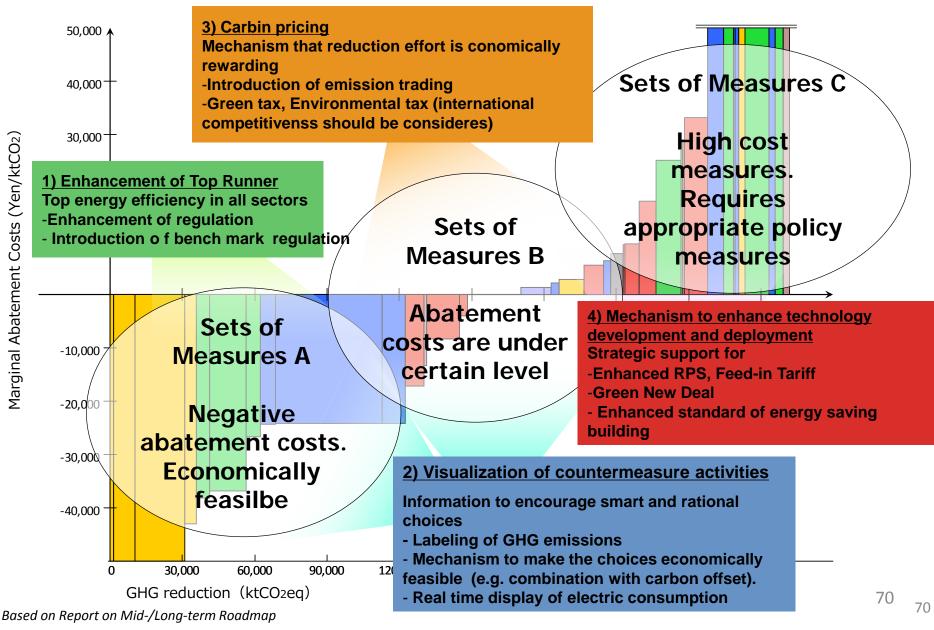
Dependency of resources /capital (Subjective Judgement by SN)

Resource	Fossil Fuel	NG	Hydro power	Forest	Land/ Sea	Hi-Ene Infra	Financial Capital	Human Capital
Value Trend		_	++ -	++ -	++		+	+++
Bhutan			00	00				0
Iran	000				00			0
Bahrain	0					00	00	0
Indonesia	00	0	O+ Geo	000	00	0		0
Thailand				0	0	0		0
Malaysia	0			0	0	0	0	0
Vietnam	00			0	0			0
China	000	0	0	0	0	00	00	00
Japan						000	0	OO 67

Example: Passenger transport sector can achieve 80% reduction in energy demand via suitable land use & improved energy efficiency

Change in passenger transport volume: reduction in total movements due to population decline Change in passenger transport methods: modal shift using public transport system (LRT etc.) Change in passenger transport due to increased urban density ('compact cities'): reduced travel distance due to proximity of destination Improved energy efficiency: improvements in automobiles & other passenger transport devices (hybrids, lightweight designs etc.)

Major Decision of Paris Agreement at COP21 (2015)

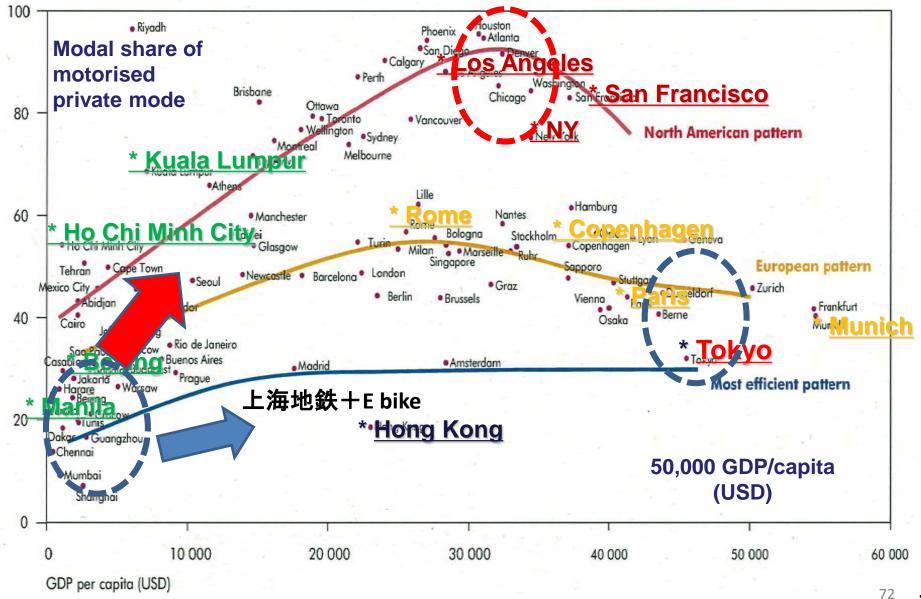

- Set target of less than 1.5/ 2.0 degree temperature rise from pre-industrial period
- All parties participate to take action under NDC

⇒Transform to Zero-emission society by the end of this

century

- Strengthen cooperation for capacity building in mitigation and adaptation
- Mobilize stakeholders in all levels to act immediately

Ex) Recommended Countermeasures



What about Asian countries?

Asia (China, ASEAN, India, Japan,,) :

- Half of global emission in 2050 (BaU)
- Center of global economic growth, High investment in infrastructure & industry⇒lock-in to conventional highenergy consuming technologies, in coming next 30-50 years
- Already exceeded 2 ton/capita
- "leapfrogging": new development pathways?
- A good example: China's late comer's advantage
- ➢ Mobil-phone: difficulty in wired telephone, IT age, ⇒No.1 user and producer of mobile phone
- ➢ Renewable energy: vast national territory, low-carbon trends, energy security, air pollution by coal use⇒No.1 in the world producer of renewable energies and devices
- Electric Bike in Shanghai (good engineering capability, engine technology needed, air pollution, potential market in Asia
- Subway in Shanghai: 14 route after International Exhibition in 2010

Co-benefit of prioritizing public transportation system for safe, punctual, clean and efficient mobilization

Source: IEA (2008)

72

Implication of 2 °C target to countries

- UNFCCC agreed to limit temperature less than 2°C increase, avoiding dangerous climate change(Article 2).
- IPCC report : a path to halve the current GHG emissions by 2050 is reasonable in order to attain this goal.
- When halved GHG emissions in 2050 is allocated equally, per capita CO2 emissions is about 2 tonCO₂/ capita
- Currently: about 5ton world average (Japan 10t, US 19t, China 5.5t, Iran 5.4t)
- Significant reduction is essential for all countries, including developing countries
- Developing countries:
- Difficult to follow high energy-dependent technologies
- Need their own unique development path, quite innovative one fit for this huge transition..

Governance

- Development Plan of Bhutan bases on "Gross national Happiness (GNH)" concept
- GNH Indices for 9 domains:
 - Psychological well-being, Health, Time use (Work, Sleep), Education, Cultural diversity and resilience, Good governance, Community Vitality, Ecological diversity and resilience, Living standard (Income, Asset, housing)

⇒

- Nine areas with same weight are defined
- Nation-wide surveys (9,000 sample) in 5 years cycle monitors peoples satisfaction in detail index. At 2015 survey *⁷:
 - Deeply or extensively happy 43.4%, narrowly happy 47.9%, unhappy 8.8%.
 - men> women, urban resident> rural , more educated> less educated tend to be happier
 - Increased satisfaction on services: electricity, tap and sewage water and housing
 - psychological well-being and government performance degraded 2-25% from 2010

Indices for the 9 domains

Width of a box shows weight	ght given to each index

Psychologicalwellbeing	Life satisfaction	Positive emotion	Negative emotion	Spi	rituality	
Health	Solf- reported health status days	althy	Disability		ntal health	
Time use	Work			Sleep		
Education	Literacy	Schooli	ng Kn	owledge	Value	
Cultural diversity and resilience	Zorig chusm skills	Cultural participation		ak native nguage	Driglam Namzha	
Good Governance	Political participati	ion	Services		Govorna- nee porto- rmance tal rights	
Communityvitality	Donation (time & money)	Safety		mmunity ationship	Family	
Ecological diversity and resilience	Wildlife damage	e Urban		es	Responsib -ility to onviron- mont	
Living standards	Income	Assets		Housing		

Relationship between GHH and development path

GNH Index	No. of Pop. /Household	Economy	Transport ation	Energy	Agri- culture	Land-use	Waste	GHG
Psychological Wellbeing	Family structure			Electrifica tion rate				
Health	Age distribution		Walking trip					
Time use		Labor Hour						
Education		Promoting Education						
Cultural diversity & resilience					Domestic productio n rate			
Community vitality	Family structure	Income						
Good governance			Public transporta tion	Electrifica tion rate		Forest Area	Waste manage ment	
Ecological diversity & resilience						Forest Area	Waste manage ment	GHG emission
Living standard	Family Structure	Income	Modal share					