Low Carbon Asia Research Network (LoCARNet) 3rd Annual Meeting Bogor, Indonesia November 24 – 26, 2014

## Forest and Land Cover Monitoring by Remote Sensing Data Analysis

Muhammad Ardiansyah

Center for Climate Risk and Opportunity Management in Southeast Asia and Pacific BOGOR AGRICULTURAL UNIVERSITY

## Introduction

- Since 1980ies, information about forest and land cover is importance for description and study of environment
- Forest and land cover:
  - the easiest detectable indicator of human intervention
  - o a critical parameter for environmental databases

### • Since 1980ies also,

- the use of remote sensing data for supporting research on global change and sustainability is tremendous
- Land use and land cover change became a key topic within global change research program (IGBP, ISSC, IAI, APN, START, GCTE, NASA-LCLUC, GLP, GOFC-GOLD)

- Why tropical forests are of particular interest in environmental study dealing with land cover and land use change ?
  - Tropical land is home to more than 55% of global population and human activities related to land use
  - Tropical ecosystem harbour a biodiversity, deforestation and land cover conversion
  - Tropical forest consist of a major terrestrial carbon sink and sources of emission.

- Tropical forests are under significant threat
- Deforestation directly cause carbon release to the atmosphere and accounts for one fifth of human induced emission of CO2 (IPCC 2007)
- In Indonesia, forest and land cover change are significant components of Indonesia's emissions profile (SNC, 2009)



- Since deforestation is almost occurring in tropical forests, thus the necessity of developing tool and providing spatially base data for monitoring deforestation and forest degradation has been underlined during COP13 in Bali
- Several effort to map land cover in the tropic region and to monitor forest cover change have been done in the past, however the scope of forest monitoring is much broader.
- 3 groups of research:
  - LCLUC and carbon dynamics
  - LCLUC and biological conservation
  - Vegetation activity and climate variability
- Remote sensing data provide most reliable data source for accurately and objectively estimates change in forest over large area, particularly in remote area and difficult to access.

# Remote sensing data analysis for land cover mapping and monitoring

 Success of land cover studies depend on the availability data at a desired spatial and temporal resolution

| Level of resolution | Spatial resolution | Scale of study         |
|---------------------|--------------------|------------------------|
| Coarse - Medium     | > 250 m            | Global (< 1 : 250,000) |
| High                | > 10 m             | Regional (< 1: 25,000) |
| Very high           | < 10 m             | Local (> 1: 25,000)    |

# The main types of data for forest monitoring in Indonesia





## Land cover product in Indonesia (regional)

| Land Cover                | Period                         | Satellite Data                | Resolution | Approach                                                    | Source               |
|---------------------------|--------------------------------|-------------------------------|------------|-------------------------------------------------------------|----------------------|
| Land cover,<br>Indonesa   | 2000 – 2011<br>(every 3 years) | Landsat 5/7                   | 6.25 ha    | Visual interpretation                                       | MoF                  |
| Land cover,<br>Indonesia  | 2000 - 2012                    | Landsat 5/7                   | 25 m       | Bayesian<br>probability<br>Network                          | LAPAN/INCA<br>S      |
| Land cover,<br>Indonesia  | 2000 - 2010                    | Landsat 5/7                   | 60 m       | Tree class.<br>algorithm                                    | Univ. of<br>Maryland |
| Land cover,<br>Kalimantan | 2009 - 2010                    | ALOS-<br>PALSAR/RAD<br>AR SAT | 50 m       | Marcov<br>random field                                      | Wageningen<br>Univ.  |
| Land cover,<br>Sumatra    | 2007 - 2010                    | ALOS-<br>PALSAR               | 25 m       | Random Trees,<br>SVM,<br>MLP (Multi<br>Layer<br>Perceptron) | Wageningen<br>Univ.  |
| Land cover,<br>Indonesia  | 2000 - 2010                    | Landsat 5/7                   | 30 m       | Segmentation                                                | ICRAF                |

## Other product of land cover (global)

| Product                                  | Sensor            | Reference                | Spatial                                  | Coverage                      | Classification                                                                   | Scientific                          | Data access / information                        |
|------------------------------------------|-------------------|--------------------------|------------------------------------------|-------------------------------|----------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------|
|                                          |                   | year                     | resolution                               |                               | scheme (legend)                                                                  | reference                           |                                                  |
| GLCC                                     | AVHRR             | 1992                     | 1 km                                     | Global                        | IGBP (17 classes)                                                                | Loveland et<br>al. (2000)           | http://edc2.usgs.gov/glcc/                       |
| UMD<br>land-cover                        | AVHRR             | 1992                     | 1 km                                     | Global                        | Simplified IGBP<br>(14 classes)                                                  | Hansen et al. $(2000)$              | http://glcf.umiacs.umd.<br>edu/data/landcover/   |
| TREES I                                  | AVHRR             | 1992                     | 1 km                                     | pan-<br>tropical              | TREES (9 classes)                                                                | Achard et al. $(2001)$              | http://www-tem.jrc.it/                           |
| Vegetation<br>Continuous<br>Fields (VCF) | AVHRR             | 1992                     | 1 km                                     | Global                        | continuous (%<br>tree cover)                                                     | DeFries et al.<br>(2000)            | http://glcf.umiacs.umd.<br>edu/data/treecover/   |
| GLC2000                                  | SPOT-<br>VGT      | 2000                     | 1 km                                     | Global                        | LCCS                                                                             | Bartholomé<br>and Belward<br>(2005) | http://www-tem.jrc.it/                           |
| MODIS<br>land-cover                      | MODIS             | 2000                     | 1 km                                     | Global                        | simplified IGBP                                                                  | Friedl et al<br>(2002)              | http://edcimswww.cr.usgs.<br>gov/pub/imswelcome/ |
| TREES II                                 | SPOT-<br>VGT      | 2000                     | 1 km                                     | Insular SE<br>Asia            | TREES (9 classes)                                                                | Stibig et al.<br>(2003)             | http://www-tem.jrc.it/                           |
| Vegetation<br>Continuous<br>Fields (VCF) | MODIS             | 2000-2005                | 500 m                                    | Global                        | $\begin{array}{c} \text{continuous (\%} \\ \text{vegetation cover)} \end{array}$ | Hansen et al.<br>(2002)             | http://glcf.umiacs.umd.<br>edu/data/vcf/         |
| GlobCover                                | MERIS             | 2005                     | 300 m                                    | Global                        | LCCS                                                                             | Arino et al<br>(2007)               | http://ionia1.esrin.esa.<br>int/index.asp        |
| TREES III                                | MERIS,<br>Landsat | 1990 /<br>2000 /<br>2005 | 30 m (stratified<br>irregular<br>sample) | pan-<br>tropical +<br>Eurasia | N/A                                                                              | N/A                                 | http://ies.jrc.ec.europa.eu/                     |
| FRA 2010                                 | Landsat           | 1990 /<br>2000 /<br>2005 | 30 m<br>(systematic<br>sample)           | Global                        | FAO (8 classes)                                                                  | N/A                                 | http://www.fao.org/forestry_44375/en/            |
| NASA<br>LCLUC                            | MODIS,<br>Landsat | 2000 /<br>2005           | 30 m (stratified block sampling)         | Global                        | N/A                                                                              | N/A                                 | http://lcluc.umd.edu/                            |



Landcover variation between GLC2000 (left, 1km resolution) and GlobCover (right, 300 m resolution)

## Challenges:

- Difference in remote sensing satellite source
- Difference in image analysis
- Difference in land cover and use category;
- Diversity in forest definition, deforestation

## • Thus:

- Disagreement among products
- Inconsistency in land cover type
- Land cover change and deforestation is different



Distribution of FRA2010 sampling

#### Results

| FRA       | Pa        | th/row | Landsat         | GLC2000/           | Land     |
|-----------|-----------|--------|-----------------|--------------------|----------|
| tile      | La        | ndsat  | ETM+            | GlobCover          | surface  |
| ID        | E         | TM+    | annual net      | annual net         | per tile |
|           |           |        | forest loss (%) | forest loss $(\%)$ | (%)      |
| e119s03   | 115       | 62     | -0.4            | -4.2               | 100      |
| e120s00   | 115       | 60     | 0.0             | -10.1              | 94       |
| e120s01   | 114       | 61     | -1.8            | 4.8                | 100      |
| e120s02   | 114       | 61     | -7.6            | -0.2               | 100      |
| e120s03   | 114       | 62     | 0.0             | -9.9               | 100      |
| e120s04   | 114       | 63     | 0.0             | -15.5              | 89       |
| e120s05   | 114       | 63     | 0.2             | 6.6                | 100      |
| e121n01   | 114       | 59     | -0.6            | -2.9               | 100      |
| e121s02   | 114       | 61     | clouds          | -3.5               | 100      |
| e121s03   | 113       | 62     | 1.4             | -10.1              | 11       |
| e122n01   | 113       | 59     | -8.0            | -8.4               | 79       |
| e122s01   | 113       | 61     | 0.0             | -12.1              | 69       |
| e122s03   | 113       | 62     | -2.2            | -2.0               | 100      |
| e122s04   | 113       | 63     | 1.5             | -5.8               | 100      |
| e122s05   | 113       | 63     | -6.2            | -11.9              | 3        |
| e123n01   | 113       | 59     | -3.0            | -14.7              | 13       |
| e123s01   | 112       | 61     | -0.4            | -8.3               | 1        |
| e123s02   | 112       | 61     | 0.0             | -9.2               | 1        |
| e123s04   | 112       | 63     | -2.4            | -14.2              | 33       |
| e123s05   | 112       | 63     | clouds          | -15.9              | 36       |
| e124n01   | 112       | 59     | 0.0             | -15.8              | 1        |
| e124s06   | 111       | 64     | -0.2            | -14.5              | 21       |
| e125n01   | 111       | 59     | -0.4            | 15.1               | 9        |
| Mean (are | ea weight | ed)    | -1.8            | -5.9               |          |
| Standard  | error     |        | 0.54            | 1.67               |          |

Mean annual forest los for Sulawesi:

- 1.8% based on Landsat ETM+,
- 5.9% based on global land cover products

## **INCAS'Land Cover Product**

- This data is part of Indonesia's National Carbon Accounting System (INCAS).
- a wall-to-wall monitoring of Indonesia's forest changes for the period 2000-2012 as inputs for carbon accounting
- The product was prepared by LAPAN (National Institute of Aeronautics and Space of Indonesia) supervised by CSIRO Australia
- Land cover type: forest and non-forest

# Forest Cover Dynamic (2000 – 2009)



#### **INCAS'S COMPONENTS**





Forest, land cover, deforestation, *V* Forest degradation/disturbance mapping

Wildfire detection CO2 Flux, concentration

**Biomas Classification:** 

Classification of forests into groups (biomass classes) that best explain the variation of biomass in undisturbed forest condition Land Cover Change Analysis Deforestation (permanent loss of forest cover) Degradation (forest clearance and regeneration or partial removal)

arbon Accounting and Reporting Model (ICARM)

**Forest Disturbance Class Mapping** 

Minimal disturbance Moderate disturbance Heavy disturbance Carbon stock estimation Aboveground biomass Belowground biomass Litter Debris Soil

#### How to integrate satellite data source from different resolutions ?

## Challenges for remote sensing based input for study of entvirontment

Precise geometric co-registration of multi-temporal, -sensor and time series satellite data

A robust pre-processing on data harmonization (spectral, spatial, temporal fitting)

Detection of land cover modification in addition to land conversion

Detection of abrupt and gradual change

Detection and separation of spontaneous, seasonal, annual change from inter-annual and long term term

Scale dependency of change estimates derived from satellite image at different spatial resolution

Development of an appropriate mapping and change detection method

Adoption of a consistent classification concept, i.e. using a hierarchical tree concept

## Concluding remarks

- Development of comprehensive and reliable operational monitoring concept for forest and land cover change needs:
  - a robust pre-processing on data harmonization (spectral, spatial, and temporal fitting)
  - Integration of single mapping approaches
  - a data use policy on existing and planned multi-spectral satellite system and development of a multi-sensor

**THANK YOU** Terima kasih