Eco System Research:

Assessment Research based on Remote Sensing Data

✓ Recent situation of renewable energy and woody biomass in Japan

 Ecological and economical modeling of wood biomass production in a small region in central Japan

 Integrate impact assessment by an ecologicalfootprint-like index (the occupancy time rate index, ORT)

Biomass usage in Japan

Source: Japan Center for Climate Change

Actions

Total energy consumption in Japan

Renewable energy

including solar, wind, and geothermal, and various biomass energy

Biomass use in Japan

Not increase, innovatively, despite of intensive research and development by both governmental and private sectors

Ecosystem Services from Forest

Abundant Wood Biomass in Japan

 Forest ecosystems also provide the ecosystem services to human society

Increase of timber volume accumulation and forest area in Japan

http://www.komeri-npo.org/record/downpour/gihu/h12/14/index.htm

Ooba (NIES): Ecosystem Assesments based on Remote Sensing

Difficulties: Sustainable biomass use

- Energy & heat from biomass is renewable and carbon neutral
- Sustainable usage of domestic wood biomass will conduct promoting domestic forestry and enhancing conservation of forest ecosystems in Japan

- Relatively high costs for forest managements and biomass productions in Japan.
- Integrated assessments are needed for production & usage of domestic wood biomass.

Ooba (NIES): Ecosystem Assesments based on Remote Sensing

- Biomass production and related environmental effects are simulated for a long-term (-2200) by ecological and cost calculation models in a selected small area
- Form the simulation results, impacts under various scenarios of forest management are assessed by a ecological-footprint-like index (the occupancy time rate index)

Ooba (NIES): Ecosystem Assesments based on Remote Sensing

Development of GIS database

Forest biogeochemical model: BGC-ES

Cost calculation model

Study area Ooba et al., (2013) SDEWES conference, Dubrovnik, Croatia, Ooba et al., (2014) *J. Cleaner Production.* (Submitting)

Ooba (NIES): Ecosystem Assesments based on Remote Sensing

Forest conditions in the study area

Simulated forest scenarios

		Management Type*	Forestry Activity	Conversion to Secondary Forest
BAU	Business as usual	Standard	Low	No
FM1	Intensive management	Modified	Low	No
FM2	Intensive & extended management	Modified	2 times higher	No
CNV	Forest conversion	Modified	2 times higher	Yes (30%)
	Sim	nulation re	sults	
Accumulated volume (m ³ ha ⁻¹)		Averaged forest a (vear)	ge I	Harvested timber (kgC ha ⁻¹ v ⁻¹)
400 300 200 100 0			800 600 400 200 0	
Water runoff		Carbon sequestrati	on	Nitrogen leaching

Ooba (NIES): Ecosystem Assesments based on Remote Sensing

Ooba (NIES): Ecosystem Assesments based on Remote Sensing

ORT Calculation in this study Landuse Carbon balance Labor Artificial (1) Absorb (2) Emission Estimated weight of the standard weight o

Carbon balance between absorptions and practices

Integrating ORTs

Remarks

For sustainable wood biomass production

- Carbon sequestration, which is a significant ecosystem service derived from plantation forests, can be enhanced by promoting forest management practices
- Consideration of wood biomass in the ORT calculation reveals that conversion of plantations to secondary forests, where maintenance is expensive (high amount of labor work), has a good effect on ecological and social systems, if the biomass usage is taken into account using a suitable system of carbon offsets.

Ooba (NIES): Ecosystem Assesments based on Remote Sensing

Comprehensive modeling from upstream to downstream

Recent publications

- M. Ooba, K. Hayashi, M. Fujii, T. Fujita, T. Machimura, T. Matsui. (2014) Ecological, economical, and sustainability assessment for wood biomass production by a temporal dynamic method. *Journal* of Cleaner Production. (in press)
- M. Ooba, K. Hayashi, T. Machimura, T. Matsui. (2014) Assessments of regional carbon circulation by a biogeochemical model from multi aspects: A case study of forests in Toyota city. *Journal of Agricultural Meteorology*. 70, 41-54.
- M. Ooba, T. Fujita, M. Mizuochi, T. Machimura, T. Matsui. (2012) Sustainable use of regional wood biomass in Kushida River Basin, Japan. Waste and Biomass Valorization, 3: 425-433.
- M. Ooba, T. Fujita, M. Fujii, M. Mizuochi, S. Murakami, Q. Wang, K. Kohata. (2013) Biogeochemical forest model for evaluation of ecosystem services (BGC-ES) and its application in the Ise Bay basin. *Procedia Environmental Sciences*, 13: 274-287.

Ooba (NIES): Ecosystem Assesments based on Remote Sensing

Acknowledgements

This study was supported by the funding program for next generation world-leading researchers (MEXT, Japan, FY2012-2013) and the Environment Research and Technology Development Fund (K113002 and 2-1404, MOEJ, FY2011-2014)

BGC-ES was funded by a grant-in-aid from special coordination funds for promoting science and technology (MEXT, FY2006-2010)

Thank you for your kind attention.

Ooba (NIES): Ecosystem Assesments based on Remote Sensing