

Ecosystem-based, integrated watershed management to address climate change

Damasa B.M. Macandog

Professor, University of the Philippines Los Baños, College, Laguna, Philippines 4031

Paper presented at the 3rd Annual Meeting of the Low Carbon Asia Research Network (LoCARNet), November 24 to 26, 2014 in Bogor, Indonesia

Background

The water quality of Laguna Lake, the largest freshwater lake in the Philippines, has significantly deteriorated due to pollutants from soil erosion, effluents from chemical industries, and household discharges. With rapid urbanization and increase in population pressure, all these have stressed the aquatic life (fish, shells, etc.) over the past several decades.

BACKGROUND FACTORS

- Globalization
- Economic Growth
- Population increase
- Urbanization

- Changing Climate

- Increasing Natural Hazards

DRIVING FORCES

- Ecological Changes (soil, water, vegetation)
- Land Use Change
- Increasing Vulnerability

ISSUES INCREASING RISK FOR FOOD AND HEALTH SECURITY

Analysis of Land Use Patterns, Drivers & Impacts of Land Use Change in the Sta. Rosa-Silang Subwatershed

Damasa B. Magcale-Macandog, Maria Noriza Q. Herrera, Dalton Erick S. Baltazar, J.L. Balon, Kathreena G. Engay, Ozzy Boy S. Nicopior, Donald A. Luna, Christian P. dela Cruz, Ma. Charisma Malenab, Milben A. Bragais, Maria Francesca O. Tan

Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna 4031

STA. ROSA SUBWATERSHED

Specific Objectives

- To analyze changes in the type, intensity, extent, distribution and patchiness of land cover types in Sta. Rosa sub-watershed in the past 30-40 years.
- To investigate and document drivers and impacts of land use change in the subwatershed.

Identified Sites for Participatory Rural Appraisal in the Sta. Rosa Sub-watershed

- Brgy. Tartaria, Silang, Cavite – upstream
- Brgy. Sto. Domingo, Sta. Rosa City, Laguna – midstream
- Brgy. Aplaya, Sta. Rosa City, Laguna – shoreline

Participatory Rural Appraisal (PRA) Activities in the Sta. Rosa Watershed

VILLAGE TRANSECT

Brgy. Sto Domingo (Mid stream)

- Farming community
- Multi-storey Agroforesty
- Flat
- Varied income source
- Industrial + residential community
- Vegetable gardens
- Solid wastes and water pollution

Brgy. Aplaya (Shoreline)

- Flat topography
- Fishing community
- Fishing
- Fishing
 Lake pollution and poverty LAKE

Land-use Changes Through Time

Sta. Rosa Subwatershed

Findings: Sites differed in land use and land-use conversion

upstream = agricultural/agroforestry

midstream = undergoing conversion from agricultural to residential-industrial

lakeshore = predominantly residential

Participatory Reconstruction of Community Land-use Maps

Barangay Sto. Domingo, Sta. Rosa City, Laguna

Barangay Aplaya, Sta. Rosa City, Laguna

Drivers-Impacts of Land-use Changes

Sta. Rosa Subwatershed

Sta. Rosa Sub-basin

LAGUNA LAKE

Agricultural and Agroforestry Systems and their Impacts on the Environment: The Case of Silang- Santa Rosa Subwatershed

Dr. Damasa M. Macandog², Maria Francesca O. Tan², Dalton Erick S. Baltazar^{2,} Maria Noriza Q. Herrera² and Dr. Ryohei Kada¹

¹Project Leader, LakeHEAD Project, Research Institute for Humanity and Nature, Kyoto, Japan ²University of the Philippines Los Baňos, College, Los Baňos, Laguna, Philippines

Objectives

 To document biophysical profile of agricultural and agroforestry farms in the Silang-Santa Rosa subwatershed.
 To document the frequency and quantity of fertilizer and pesticide application to agricultural and agroforestry crops in Silang-Santa Rosa subwatershed.
 To assess the environmental impacts of fertilizer and

pesticide application in agriculture and agroforestry systems in Silang-Santa Rosa subwatershed.

Methodology

Farm survey

- 1) biophysical characteristics
- 2) tenurial conditions
- 3) farming input and output allocations
- 4) labor utilization
- 5) fertilizer and pesticide application details

6) environmental impacts of the agricultural and agroforestry systems in the watershed

n details icultural and agroforestry

Soil and Ground water sampling analysis

RESULTS

Farming System

Inorganic Fertilizer Use in Silang-Santa Rosa subwatershed

Pesticide Use in Silang-Santa Rosa subwatershed

Rosa

Nitrate level in Ground Water in Silang-Santa Rosa subwatershed

Nitrate Level in Water in Silang-Santa Rosa subwatershed 4 3.5 3 Vitrate level (mg/L) 2.5 2 1.5 1 0.5 0 P86 CRY UP 86 WELL UP ACLINEL UP 1 UIT WELL UP 1 UIT WELL UP 3 WELL NS 1 RT OR NS CRY UP PS CRY Tartaria; PSL: Pasong Langka

US EPA standard limit for drinking water = 10 mg NO₃/Li

Results and Discussion: Organochlorine Pesticides (OCP) in Silang-Santa Rosa subwatershed

ОСР	PBG_3_2_UP	PBG_2_3_UP1	BCL_7_14_UP
Alpha - BHC, ug/kg	<0.01	<0.01	<0.01
Lindane, ug/kg	<0.01	<0.01	<0.01
Beta - BHC, ug/kg	<0.01	<0.01	<0.01
Delta - BHC , ug/kg	<0.01	<0.01	<0.01
Heptachlor, ug/kg	<0.02	<0.02	<0.02
Aldrin, ug/kg	<0.02	<0.02	<0.02
Heptachlor Epoxide, ug/kg	<0.02	<0.02	<0.02
g-Chlordane, ug/kg	<0.02	<0.02	<0.02
a-Chlordane, ug/kg	<0.04	<0.04	<0.04
4,4 DDE, ug/kg	<0.01	<0.01	<0.01
Endusulfan 1, ug/kg	<0.02	<0.02	<0.02
Dieldrin, ug/kg	<0.04	<0.04	<0.04
Endrin, ug/kg	<0.04	<0.04	<0.04
4,4 DDD, ug/kg	<0.02	<0.02	<0.02
Endusulfan 11, ug/kg	<0.01	<0.01	<0.01
4, 4 - DDT, ug/kg	<0.04	<0.04	<0.04
Endrin Aldehyde, ug/kg	<0.02	<0.02	<0.02
Methoxychlor, ug/kg	<0.02	<0.02	<0.02
Endusulfan Sulfate, ug/kg	<0.02	<0.02	<0.02
Endrin Ketone, ug/kg	<0.02	<0.02	<0.02
Toxaphene, ug/kg	<1.0	<1.0	<1.0

PBG: Pulong Bunga; BCL: Bucal

***Soil samples were collected last June 2013 in Silang, Cavite within 2 inches of soil surface, 2weeks to 1 month after pesticide application

Environmental Impacts of Farming in Silang-Santa Rosa subwatershed

Conclusion

SILANG-SANTA ROSA SUBWATERSHED

- Characterized by agroforests with the dominance of pineapple in the upstream and midstream areas
- More inorganic fertilizer use over pesticides for pineapple
- Ammonium sulfate, urea and yara are commonly used inorganic fertilizers
- Observed negative impacts are soil acidity, soil erosion and floods
- Nitrate and OCP levels of ground water and streams are below the USEPA standard limits

Floral and Soil Arthropod Biodiversity of Agroforestry and Agricultural Systems in the Upland Areas of Silang, Cavite, Philippines

Damasa B. Magcale-Macandog¹, Tadayoshi Masuda², Jennifer D. Edrial¹, Noel P. Labutap^{1,} Maria Noriza Q. Herrera¹, Kristine S. Mago¹, Jose Emmanuel I. de Luna¹, Ma. Bernice Carmela B. Liquigan¹ and Marlon A. Reblora¹

¹Institute of Biological Sciences, University of the Philippines Los Baños, College, Laguna 4031 ²Research Institute for Humanity and Nature, Kyoto, Japan

Objective

 To assess plant and soil arthropod diversity under various agroforestry and agricultural systems in Silang, Cavite

Methodology

Flora

Farm Selection

- Reconnaissance survey of agroforestry and agricultural systems in the upstream and midstream areas
- Selected 8 agricultural and 15 agroforestry systems from 7 barangays/villages

Data collection and sampling:

- Eight 10m x 10m quadrats were established within each agricultural and agroforestry systems
 - Tree species (Diameter at breast height (DBH), merchantable height, total height, diameter of crown)
 - Weeds, grasses, seedlings, shrubs

Data analysis:

- Shannon and Simpson's diversity indices
- Shannon evenness index
 - Margaleff's richness index

Methodology

Soil arthropod

Soil sampling:

 Collected composite soil and litter samples from same sampling plots as the flora analysis

Sample processing:

- Soil and leaf litter samples were placed in Berlese funnels for 3-5 days
- Insects were preserved in containers with 95% ethanol

Identification and data analysis:

 Insects were identified to the family level RESULTS

Agricultural systems

a) banana, b) pineapple, c) coffee; and agroforestry systems: d) papaya-pineapple, e) coffee-pineapple

Species Richness based on Plant Growth Habit

Table 1. The number of species representing the various growth habits recorded in agroforestry and agricultural systems in Silang, Cavite.

	Agroforestry	Agricultural	
Growth Habit	Systems	Systems	Total
Tree	29	21	34
Herb	44	53	66
Grass	13	11	16
Shrub	13	10	15
Vine	3	2	3
Sedge	2	1	2
Fern	5	4	8
Total	109	102	144

Species Richness of Various Agricultural Systems

- Vegetable agricultural system has highest number of species and highest richness of herbaceous species
- Pineapple has highest number of grass species
- Coffee has more shrub species

Species Richness of Various Agroforestry Systems

- Total number of trees and shrubs in agroforestry were higher than
 agricultural systems
- Coffee-banana agroforestry system has the highest species richness
- Papaya-coffee-pineapple system has the highest number of herbaceous species

Biodiversity Indices of Emergent Species

- Shannon diversity index agroforestry systems have higher biodiversity of emergent species
- Higher Simpson's Dominance Index of agricultural systems certain emergent species are dominant in agricultural systems
 - i.e. banana, guyabano and coffee agricultural systems
- Evenness index is equal for both uniform relative abundance of different species in both systems

Soil Arthropod Diversity

Soil arthropods

Fig. 6. The number of insect individuals belonging to various insect orders recorded in agroforestry and agricultural farms in Silang, Cavite

Fig. 7. The number of arthropod species and their ecological functions in the agroforestry and agricultural systems in the Silang, Cavite.

Conclusion

 Agroforestry systems have higher floral and soil arthropod species richness and diversity than agricultural systems

Geophysical Characteristics and Erodibility Assessment of the Silang-Santa Rosa River System

Damasa M. Macandog Jacquelyn Miel Mic Ivan V. Sumilang Donald Luna

Objective

To develop an ecological profile for the Silang-Santa Rosa River and its riparian vicinity to meet the needs of development planning, and design an environmental program for the sustainable development of the resource

3D map of the Silang-Santa. Rosa Sub-watershed

Morphology and Land Use of the Selected Portions of Silang-Santa Rosa River

General Land Use on Easment Sides (Left Side)

General Land Use on Easment Sides (Right Side)

Riverbank Erosion Status Left Side

Riverbank Erosion Status Right Side

Rock Formations Left Side

Rock Formations Right Side

RIVER DEPTH MAP

NATURE OF RIVERBED MATERIAL MAP

PRESENCE OF SPRING MAP

MITIGATING MEASURES MAP

Legend riverbed_utm1 MITIGATING CEMENTED CEMENTED/RIPRAP CEMENTED/RIPRAP RIPRAP(COLLAPSED) SANDBAGS TO STABILIZE NONE Silang-Sta. Rosa River Silang-Sta. Rosa River

Projection: WGS84 / UTM Zone 51 N Created on: 02-08-12 Created by: Institute of Biological Sciences, UPLB

STATUS AND SPECIFIC RECOMMENDATIONS FOR REHABILITATION OR ENRICHMENT OF SELECTED PORTIONS OF THE STA. ROSA – SILANG RIVER SYSTEM and SUBWATERSHED

Informal Settlers

Inchican, Pulo

				_	
	Observed Condition/s		Implication/s		Strategies/ Policy Options
•	Observed Condition/s Informal Settlers encroaching along the easement and riverbank Direct waste water discharges to the river Unmanaged solid waste disposal	•	Residents are vulnerable to flooding and may result to loss of lives and properties Source of water pollution due to waste	•	Strategies/ Policy Options Relocation of informal settlers Observing the use of buffer zones as part of the protected areas Rehabilitation of
•	Residents usually take a bath and wash clothes at the area		unmanaged solid waste disposal		easements and riverbanks

Concerns for land use and land use conversion

Ulat

Observed Condition/s			Implication/s	Sti	rategies/ Policy Options
•	Agricultural and other forest	•	Unplanned land use and land	•	Creation of a
	lands are being converted to		conversion could lead to a		comprehensive land
	subdivisions		disorderly form of development		use plan and zoning
•	Agricultural lands are being	•	Conversion of Agricultural and other		ordinance
	abandoned and sold to land		forest lands into subdivisions could	•	Strict implementation
	developers		lead to the increase rate of soil		and monitoring of
			erosion; contributor to watershed		policies related to land
			degradation which could affect the		use and zoning
			freshwater resources		ordinance
A		•	Agricultural lands that are being	•	Giving incentives and
			abandoned and sold affects food		assistance to farmers
	Mart Trans		security		and agricultural land
	Contest of the second				owners
	Carl Constant of Constant				
A C	216				

Disposal of solid wastes Into the river

Pulo, Inchican, Ulat, Liip, Macabling dam, Balibago, Dila Salang Bago, City Hall Area

	Observed		Implication/s		Strategies/ Policy Options
	Condition/s				
•	Nearby	•	Possible source of	•	Implementation of a proper
	residents are		water pollution		solid and liquid waste
	throwing their	•	Clog canals and		management
	garbage into		tributaries that	•	Enforcement of the existing
	the river		contributes to flooding		environmental policies
				•	Protection through the
					creation of "Bantay llog"

Waste water discharges

Techno Park, Pulo, Liip, Salang Bago, Balibago, Dila, City Hall area

Observed		Implication/s		Strategies/ Policy Options				
	Condition/s							
•	Discharges of water coming from households, subdivisions, industrial area	•	Source of water pollution	•	Construction of a centralized sewerage system facility for the whole Silang-Santa Rosa River Subwatershed Implementation of a proper solid and liquid waste management Enforcement of the existing environmental policies Protection through the creation of "Bantay Ilog"			

Severe Erosion

Sto. Domingo

	Observed		Implication/s		Strategies/ Policy Options
	Condition/s				
•	Severe erosion	•	Erosion leads to	•	Easement and riverbank
	at the sides of		water siltation that		rehabilitation; construction of
	the river		affects water		riprap and planting of native
			quality and lessens		species of plants
			the river's water	•	Information, Education,
			holding capacity		Communication Campaign
		•	People present at		about hazards present at the
			the area are at risk		area
			from landslides	•	Dredging of river beds

Ecotourism

Pasong Nangka

Observed Condition/s		Implication/s			Strategies/ Policy
					Options
•	Observed to have	•	Potential source of	•	Creation of local
	ecotourism		income through		ecotourism plan that
	potentials		ecotourism		would enhance and
•	Minimal presence of	•	Possible source of		limit the existing
	solid wastes from		solid and liquid		tourism activities
	the local tourists		waste		(incorporated to
•	Degraded stairways				Disaster Risk
	going down to the				Reduction
	river				Management Plan,
					DRRMP)

Enrichment Zone

Techno Park

Observed Condition/s		Implication/s			Strategies/ Policy		
					Options		
•	Presence of dense	•	Lessens the rate of soil	•	Enhancement		
	vegetation on both		erosion		through planting of		
	easement sides	•	Helps maintain good		native species of		
			water air and quality		plants		
			Provides habitat for	•	Protection through		
			fauna		the creation of		
					"Bantay Ilog"		

CONCLUSION

ERSI

S3R2

