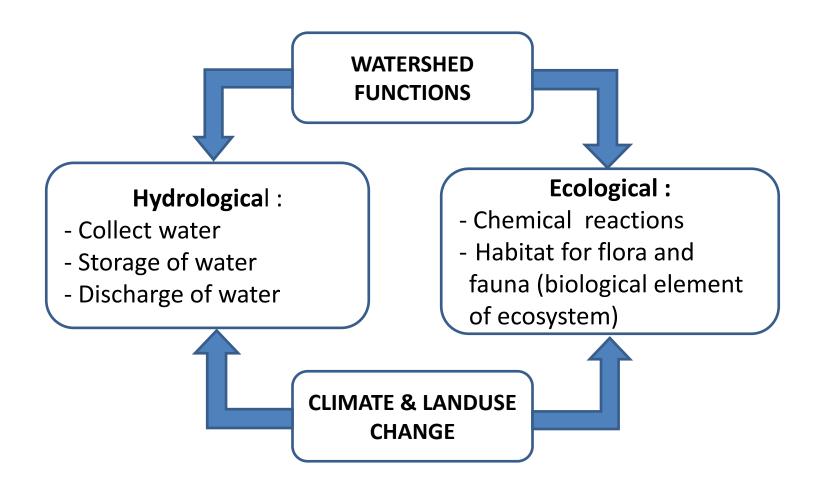
Toward Watershed Resilience Through Climate Change Mitigation and Adaptation: Case Study of Singkarak Watershed, West Sumatra - Indonesia

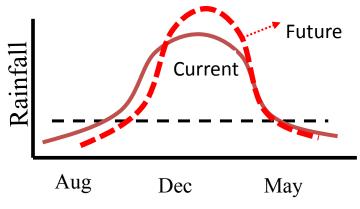
Farida

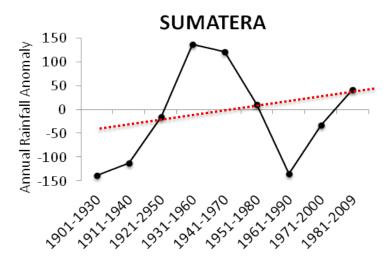
Geography Education Department STKIP PGRI Sumatera Barat


Presented in Low Carbon Asia Research Network (LoCARNet) 3rd Annual Meeting, Bogor 24 – 26 November 2014

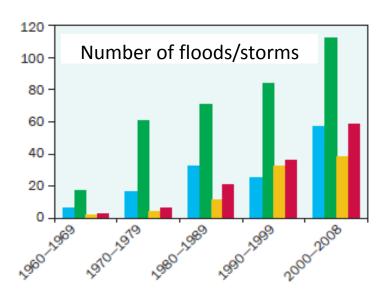
OUTLINE

- 1. Watershed and climate change
- 2. Description on Singkarak watershed
- 3. Impact of change in rainfall and landuse into water resource in Singkarak watershed
- 4. Community role toward watershed resilience
- 5. Lesson learned and input for policy maker for Singkarak watershed management toward climate resilience watershed

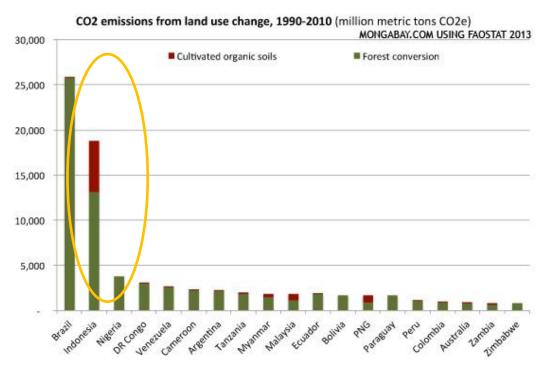


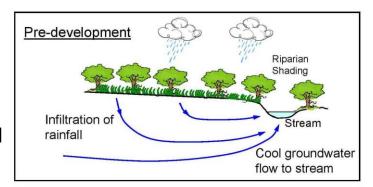


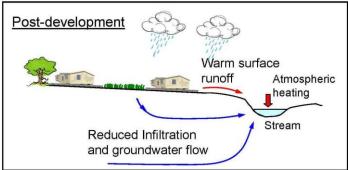
Climate change


- Change in rainfall variability
- Change in rainfall pattern
- Change in rain season
- Increase 'extreme' event

Source: Boer, 2013

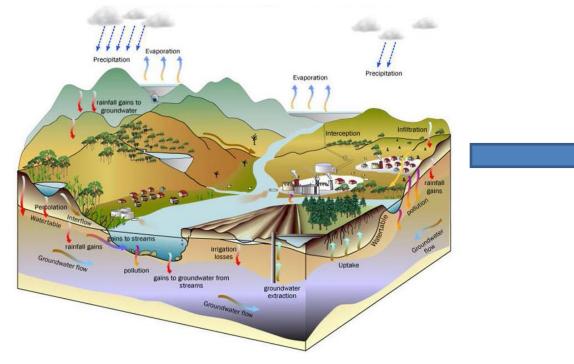


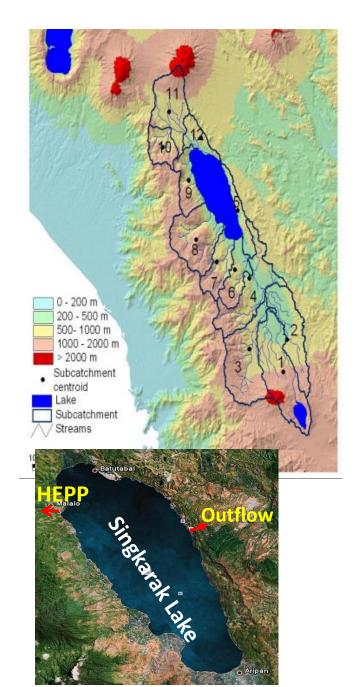

Source: Faqih, 2012



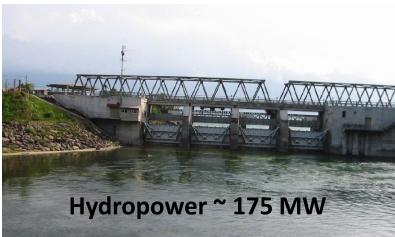
Land use change

- Increase drainage
- Soil compaction
- Change in watershed ecosystem
- CO₂ emission





Sustainable watershed management


Watershed resilience toward climate change

- Located in West Sumatra province
- Administrative : two districts (Solok & Tanah Datar)
- Singkarak watershed area ~ 1135 km²
- Lake area ~ 108 km
- Population ~ 440,000 inhabitants
- 6 major rivers into the lake & 1 river outflow
- Intensive upland agriculture & fishing ~ 70%
- Forest cover 15% of western part of the basin
- Rainfall (1990 2009) ~ 1700 3200 mm/y

Singkarak lake provides:

Local endemic fish ~ ikan bilih

 The region is a rain-shadow area which usually dry and uncertainty of rainfall

 The shift of rainfall pattern in Singkarak ~ indication of climate change

Period	Α	М	J	J	А	S	0	N	D	J	F	М
1951-1975												
1976-2000												
1976-2003												

Western part of Sumatra: max rain ~ nov & dec, min rain ~ jul & aug

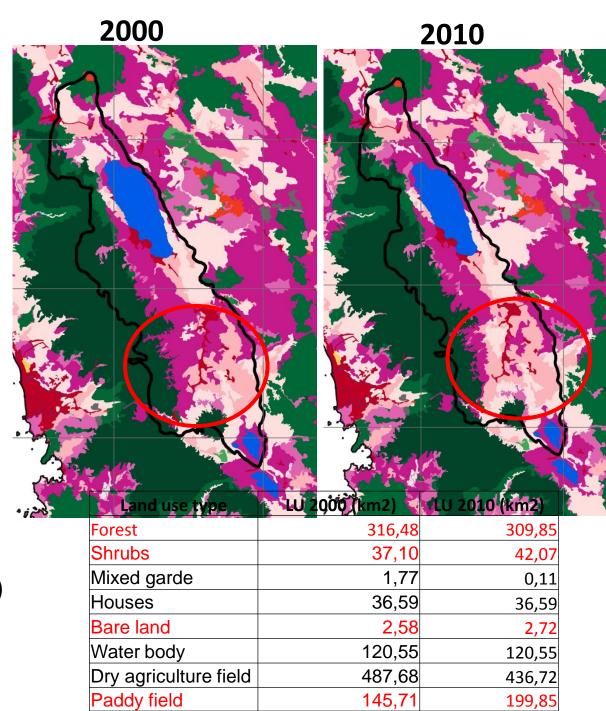
Using Schmith-Fergusson of wet & dry month identification

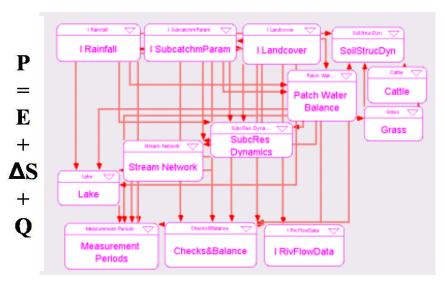
dry month: < 60 mm humid month : 60 - 100 mm wet month: > 100mm

Sumber: Febriamansyah,

2013

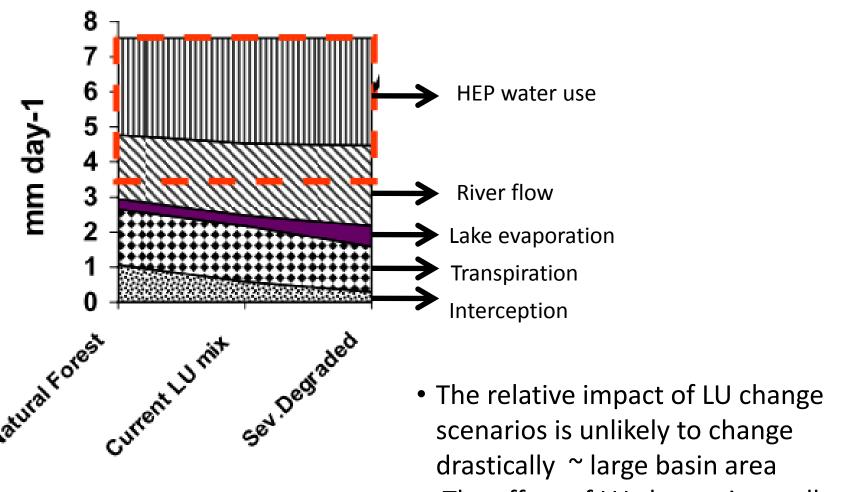
- Fluctuation of lake water level 1999 2009 ~ 3,5 m:
 impact to Ombilin river outflow (2 m³/dt rain season, 6 m³/dt dry season after HEPP operation) ~~ decrease 30% water for downstream paddy field
- Erosion & sedimentation due to highly intensive agriculture and land use change in the upper watershed eg. Erosion rate Sumani sub-catchment \sim 46 47 ton / year \sim lake water quality




Critical land (2010)

Critical land ~ 272 km² (2010) ~ 23% total area watershed

- Using GenRiver model (developed by World Agroforestry Center South East Asia Program) to assess the effect of LU change and Rainfall
- GenRiver is a distributed process-based model that extends a plot-level water balance to subcatchment level.
- It was developed for data -scarce situations and is based on empirical equations and can be used for as a tool to explore our understanding of historical changes in river flow due to land use change.



GenRiver sectors:

- 1. Water balance
- 2. Stream network
- 3. Land cover
- 4. Sub-catchment paramaeters

Genriver result of various scenarios

 The effect of LU change in smaller scale : details on sub catchment

What can we learn from GenRiver simulation?

- LU change in smaller scale basin can have considerable effect on river flow
- More forest will reduce river flow during the rainy season and will increase river flow during the dry season ~ flooding and drought risk

Land use type	Land use area (Ha)					
	thn 2007	skenario 1	skenario 2	skenario 3		
Shrubs	831.2	882.93	588.62	76		
Forest	3151.8	1765.86	1471.55	1570		
Mixed garden	1088.5	2001.308	588.62	3500		
Houses	146.9	294.31	1765.86	200		
Paddy field	487.4	588.62	1177.24	350		
Agriculrural land	180.4	353.172	294.31	190		

Source: Nurwindah, 2009

Scenario 1: 30% forest decrease from 2007

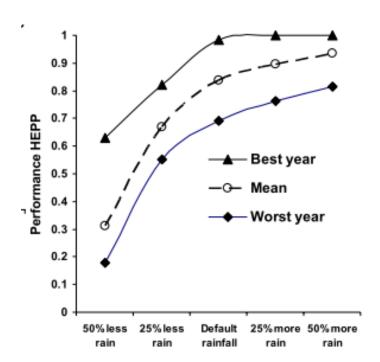
Scenario 2:30% forest decrease form scenario 1 (smallest forest area)

Scenario 3: increase rate based on tren of LU change trend

What can we learn from GenRiver simulation?

Bulan	Q (m³/detik)						
Bulan	th 2007	skenario 1	skenario 2	skenario 3			
Januari	10.107	10.155	10.377	10.122			
Pebruari	7.679	7.813	8.121	7.819			
Maret	4.719	4.757	4.907	4.750			
April	2.358	2.251	2.191	2.250			
Mei	1.649	1.640	1.728	1.640			
Juni	1.795	1.914	2.221	1.908			
Juli	0.934	0.913	0.676	0.923			
Agustus	0.530	0.517	0.421	0.512			
September	1.527	1.553	1.584	1.550			
Oktober	0.492	0.420	0.189	0.430			
Nopember	1.216	1.311	1.687	1.262			
Desember	4.026	4.076	4.234	4.062			
Total	37.032	37.321	38.336	37.228			
Qrata	3.086	3.110	3.195	3.102			
Qmaks	10.107	10.155	10.377	10.122			
Qmin	0.492	0.420	0.189	0.430			
Qmaks/Qmin	20.536	24.179	54.937	23.544			

Scenario 2 : less forest


- Highest total river flow

Highest ratio Qmaks/Qmin ~
 LU change will reduce infiltration rate ~ risk of flooding and drought

Source : Nurwindah, 2009

What can we learn from GenRiver simulation?

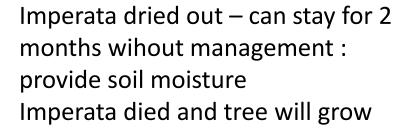
- Land-use change—particularly increased effective impervious area—could potentially have greater effects on the erosion, sedimentation, flooding, land stability, water quality, and aquatic habitat
- Climatic variation influences performance of HEP more than LU change in the basin

The rainfall scenario based on proportion to the default rainfall

- Resilience: the ability of a social or ecological system to absorb
 disturbances while reaining the same basic structure and ways of
 funtioning, the capacity of self-organization and the capacity to adapt to
 stress and change (IPCC)
- Watershed resilience: how to reduce the vurnerability and risk of climate change impacts on watershed ~ prepare for climate change in the watershed

- Farmers in Paninggahan village: emission reduction through agrofrestry joining Voluntary Carbon Market (VCM) scheme
- Farmers practices Assisted Natural Regenarion (ANR) in imperata grassland before planting the tree ~ land rehabilitation

Found many natural (economic valuable) seedlings in between imperata



Pineapples under the imperata

Protect natural tree seeding and press the imperata

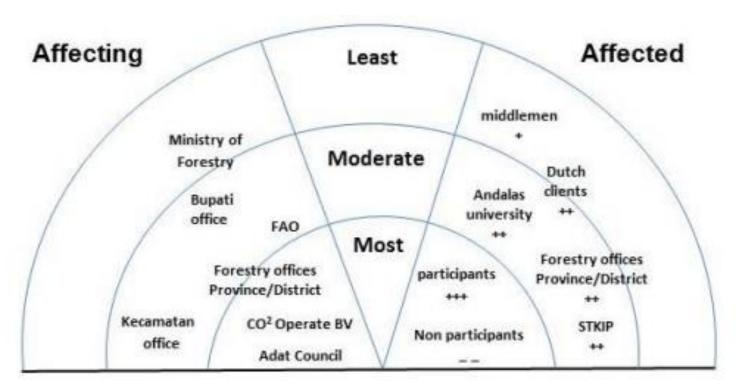
Natural accuring trees and planted trees grows fast : $3 \text{ years } \sim 3 - 4 \text{ m} == \text{quick gains in carbon sequistration}$ ANR : a climate resilient practice for carbon sequestration

 30.65 ha of ANR site = VCM site in Paninggahan village through VCM facilitated by CO2 Operate BV (The Netherlands)

Baseline: Carbon stock in VCM sites (Paninggahan village)

Imperata grassland

No	Plot	Total carbon (ton c/ha)
1	BP P1	25.2
2	BP P2	4.9
3	TD P3	4.0
4	TD P7	20.9
5	TM P10	4.3
	Total	59.4
	Average	11.9


Shrubs

No	Plot	Total carbon (ton c/ha)
1	BP P3	17.9
2	BP P4	23.0
3	TD P4	8.6
4	TD P6	30.5
5	TM P7	23.3
6	TM P9	38.4
	Total	141.7
	Average	23.6

Comparasion with other carbon stock related research :

Yuniawati (2011): Carbon stock on 2,3, 4 years old of Acacia Crassicarpa which grow on the peat land range to 12 – 36 ton C/ha

Relatively have the same range of carbon stock from imperata and shrubs land with range of 11 - 23 ton C/ha ~ have potential carbon stock with better soil and tree managements

Rainbow diagram with stake holders affecting or being affected by landscape restoration (Source : Burgers, et al 2014)

LESSON LEARNED AND INPUT FOR POLICY MAKERS

- Details and specific study on response of hydrological funtion of Singkarak watershed under climate change projection
- Combination scheme that generate short term benefit (such as carbon payment or short rotation crops) and longer economic benefit (such as harvestable agroforestry trees) can be an alternative and effective part of carbon mitigation to improve watershed resilience toward climate change
- Sustainable water managament will enhance the waterhed resilence toward climate change
- Continuation of broad restoration effort lead to broad rural development
- The strong and well-defined customary and convention influenced the VCM institutional set up

