Asia-Pacific Integrated Model (AIM) and local environment

Toshihiko Masui, Tatsuya Hanaoka, Hancheng Dai, Rui Xing, Chan Park, Shivika Mittal National Institute for Environmental Studies

LoCARNet 3rd Annual Meeting ASTON BOGOR HOTEL and RESORT, Bogor, Indonesia

24-26 November 2014

The research in this presentation is supported by the Environment Research and Technology Development Fund (S-12-2) of the Ministry of the Environment, Japan, and Climate Change Research Program of NIES.

Asia-Pacific Integrated Model (AIM)

Asia-Pacific Integrated Model (AIM) is an integrated assessment model to assess mitigation options to reduce GHG emissions and impact/adaptation to avoid severe climate change damages.

The various types of models have been developed since 1990, and nowadays the research field is extended to sustainable development with Asian researchers.

http://www-iam.nies.go.jp/aim/

Contents of Present AIM

Capacity building related to AIM Training Workshop at NIES, Oct 27-Nov 7, 2014

In this presentation

- Our new research topic on reduction scenarios of both GHG emissions and air pollutant (SLCP) emissions is introduced.
 - The Environment Research and Technology Development Fund (S-12-2) of the Ministry of the Environment, Japan
 - Application of Enduse model and CGE model to local area in China, India, Korea & Japan
- Japan's experiences on mitigation target discussion will be introduced tomorrow.
 - Application of Enduse model and CGE (Computable General Equilibrium) model
 - Activities related to DDPP (Deep Decarbonization Pathway Project)

Importance of SLCP (Short-Lived Climate Pollutants)

UNEP & WMO(2011) Summary for Decision Makers, Integrated Assessment

of Black Carbon and Tropospheric Ozone,

http://www.unep.org/dewa/Portals/67/pdf/BlackCarbon_SDM.pdf

LLGHG and SLCP

- Climate change is global scale issue.
- SLCP and air pollution are local issue.
 - Socio-economic features are different among local areas.
 - Impacts due to pollutants are different among areas.
- AIM team tries to develop the local scale Enduse model and CGE model to assess both GHG and SLCP emission reductions.

Promotion of climate policies by assessing impacts of SLCP and LLGHG emission pathways

by Dr. Hanaoka

9

GHG emissions pathways to achieve 2 °C target from Global Enduse model analysis

- 2°C target requires high carbon price around 400 US\$/tCO₂ in 2050 (T400 scenario), which is necessary to consider comprehensive strategies to promote mitigation technologies to achieve the maximum potentials of energy savings.
- □ In T400 scenario, GHG emissions in Asia in 2050 are largely reduced
 - > at 20.5Gt CO_2 eq which correspond to 69% reductions from baseline.
 - (at 7.5 Gt CO₂eq which correspond to 45% reductions from the levels in 2005.)

Source) modified from Hanaoka et al, Environmental Pollution, 2014

Global Enduse model by Dr. Hanaoka

SO₂ & NOx emissions pathways in Asia
 Co-benefits of implementing CO2 mitigation policies In order to focus on co-benefits of reducing air pollutants by introducing
 GHG mitigation measures, air pollutant removal devices are not considered
 SO₂ and NOx emissions in Asia will be significantly reduced as co-benefits of achieving the GHG emissions pathways of 2°C target scenarios.

Source) modified from Hanaoka et al, Environmental Pollution, 2014

BC & PM emissions pathways in Asia - Co-benefits of implementing CO2 mitigation policies-

BC and PM emissions in Asia will be significantly reduced as co-benefits of achieving the GHG emissions pathways of 2°C target scenarios.
 These are due to measures of energy efficiency improvement on the

demand side and also a drastic energy shift on the supply side.

Source) modified from Hanaoka et al, Environmental Pollution, 2014

Korea Enduse model by Dr. Park

Energy service		Activity	Structure	Intensity	
Climate	Heating	Household	Floor area/Household	Energy service demand/Floor area	
related	Cooling	Household	Floor area/Household	Energy service demand/Floor area	
service	Hot-water	Household	Population/Household	Energy service demand/Population	
Other service	Lighting	Household	Population/Household	Energy service demand/Population	
	Cooking	Household	Population/Household	Energy service demand/Population	
	Refrigerator	Household	Population/Household	Energy service demand/Population	
	ІСТ	Household	-	Energy service demand/household	
	Others	Household	-	Energy service demand/household	

Korea Enduse model by Dr. Park

Methodology for Korea analysis

Korea Enduse model by Dr. Park

Energy service demand in residential sector in Korea

CO2 emission of 31 Chinese provinces by Multi-region Enduse Model for China

• Baseline scenario: technology frozen; Tax80 scenario = 80US\$/ton emission tax applied

Air pollutant emissions from residential sector by Dr. Xing

- CO₂ emission are mainly caused by use of heating (coal) and electronics (electricity)
- SO₂, NO_x and PM emissions are mainly caused by massive use of central heating (coal) in northern areas

Future trend comparison: urban vs. rural

• Residential energy service demands: China, developed region, less developed region

China CGE model by Dr. Dai

Method: A multi-region CGE model for China

Population Labor Investment		 Economy GDP Industry structure Trade Household income Energy security Energy mix Renewable energy 	Sustainable economy	Key policies
Technology Renewable energy Carbon capture and storage	General equilibrium model 30 provinces of China Several world regions Dynamic: 2002-2050 22 Sectors Gases: NH₂, NMVOC. 			Mitigation potential
Energy efficiency Resource Energy/Land/ Water				Economic impacts
Low-carbon policy Emission trading Carbon/Energy CAP/tax Benewable/Lifestyle	CH_4 , N_2O , NO_x , SO_2 , CO_2	Environment GHG emissions Air pollutants 		Co-benefits Low-carbon
nenewable/ Ellestyle				roadmap

Economic driving forces

Results: GDP & per capita GDP

- Catch-up by western provinces, narrowed regional economic gaps
- But eastern & southern China are still the richest

Results: energy intensity & carbon intensity

- Energy intensity of China from 2002 to 30 improves by 41% in BaU; South (22%) and East (37%) China is slower than Central (48%), Northeast (46%) and Northwest (42%) China.
- Carbon intensity improves by 40% over 2002-30; Higher improvement in Northeast (49%) and Central (46%) China; While less in South (27%) and North (35%) China

Conclusion

- AIM is one of the integrated assessment model to assess climate mitigation and adaptation, and AIM team has training workshops for capacity building with the aim of model development and application.
- AIM team is now extending Enduse model and CGE model in order to assess GHG emission reductions and SLCP emission reductions in local scale in Asian countries.
- Asia will have a common target to achieve the 2 degree target. We will be able to use co-benefit of GHG mitigation.
 On the other hand, not only each country but also each local area has a different condition such as economy, technology, resource, climate, culture and so on. We will have to propose the effective countermeasures taking into account these differences.

