

# Quantitative approach of Asian regional low carbon development within a context of socio-economic development

Low Carbon Asia Research Network (LoCARNet) 3rd Annual Meeting Venue: ASTON BOGOR HOTEL and RESORT, Bogor, Indonesia Date: 24 November 2014

Speaker: Yuzuru Matsuoka, Kyoto University, Japan



## Several points of Asian Low Carbon Development (LCD) study

- 1. Planning of Low Carbon Society and its realization cannot be conducted without multi-disciplinary, integrated and quantification methodologies.
- 2. Establishing the methodologies and apply them to the target regions, taking account of regional distinctive diversified characteristics, is indispensable.
- 3. Design positive Asian Low Carbon Development Actions and roadmaps towards the Visions with back-casting approach.

Under these view points, we are conducting multi-scale and multi-disciplinary analysis for designing Asian Low Carbon Development (LCD)





Up to now, we applied and are applying our LCD study approach to 8 nations and 12 regions in Asia regions



LoCARNet Annual Meeting,2014



## Research procedure of our LC development approach

#### Area

- Base year
- Target year
- Covered sectors
- Actors/Players
- LCS target

# Quantifications of parameters:

- Population
- Final demand
- Transport parameters
- Energy service demand generation
- Energy device share
- Power supply assumptions

#### Setting framework

Qualification of Socioeconomic Vision

Quantification of Socioeconomic Visions and GHG emission

Coupling of Socio-Economic policies and LCD countermeasures

Analysis of Alternative LCD scenarios and measures

Design LCD Actions and Roadmaps from the analysis

#### LoCARNet Annual Meeting,2014

- Demography
- Lifestyle
- Economy
- Transport
- Building
- Resource efficiency
- Energy strategy
- Power supply

Evaluation of Scenarios / measures:

- Transportation system
- Energy service demand generation
- Energy device share
- Power supply options
- Renewable energy
- Carbon sink
- etc.



## Tools prepared for conducting Asian LCD studies Q & A on the tools/models

| Purpose                                                                                                                    | Тс                | ools developed      | Explanation                                                             |
|----------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------|-------------------------------------------------------------------------|
| What kind of LCD measures are available?                                                                                   | $ $ $\rightarrow$ | LCM-DB              | Low-carbon measures<br>database                                         |
| How to adjust diverse objectives and preferences among LCD Actions ?                                                       | $ $ $\rightarrow$ | AHP tool            | Analytic hierarchy process tool                                         |
| How to manage LCD Actions systematically ?                                                                                 | $ $ $\rightarrow$ | LCD-Action<br>Tools | A group of Tools for<br>maintaining logical structure<br>of LCD actions |
| How to develop quantitative visions, check<br>the feasibility of GHG reduction targets,<br>industrial structure and so on? | $ $ $\rightarrow$ | ExSS                | Extended snapshot tool.                                                 |
| What is the optimal technologies invested and how much are their costs?                                                    | $\rightarrow$     | AIM/<br>Enduse      | AIM Enduse-bottom-up<br>model                                           |
| How much is the impact to macro-<br>economy of LCD actions ?                                                               | $\rightarrow$     | AIM/CGE             | AIM Computable general equilibrium model                                |
| How to construct the roadmaps of LCD actions?                                                                              | $\rightarrow$     | ВСТ                 | Backcasting tool                                                        |



# Overall research procedure of our LC development approach

#### Area

- Base year
- Target year
- Covered sectors
- Actors/Players
- LCS targets

Quantifications of parameters:

- Population
- Final demand
- Transport parameters
- Energy service demand generation
- Energy device share
- Power supply assumptions

**Setting framework** 

Qualification of Socioeconomic Vision

Quantification of Socioeconomic Visions and GHG emission

Coupling of Socio-Economic policies and LCD countermeasures

Analysis of Alternative LCD scenarios and measures

Design LCD Actions and Roadmaps from the analysis

LoCARNet Annual Meeting,2014

- Demography
- Lifestyle
- Economy
- Transport
- Building
- Resource efficiency
- Energy strategy
- Power supply

Evaluation of Scenarios / measures:

- Transportation system
- Energy service demand generation
- Energy device share
- Power supply options
- Renewable energy
- Carbon sink
- etc.



# Analyzing procedure

### • Area

- Base year
- Target year
- Covered sectors
- Actors/Players
- LCS target

Quantifications of parameters:

- Population
- Final demand
- Transport parameters
- Energy service demand generation
- Energy device share
- Power supply assumptions

Setting framework

Setting of Socioeconomic Vision

Quantification of Socioeconomic Visions and GHG emission

Coupling of Socio-Economic policies and LCD countermeasures

Analysis of Alternative LCD scenarios and measures

Design LCD Actions and Roadmaps from the analysis

- Demography
- Lifestyle
- Economy
- Transport
- Building
- Resource
  efficiency
- Energy strategy
- Power supply

Evaluation of Scenarios / measures:

- Transportation system
- Energy service demand generation
- Energy device share
- Power supply options
- Renewable energy
- Carbon sink
- etc.



How to combine the tools in order to keep consistency and integrate Socio-Economic policies and LCD actions 2 nd to 3<sup>rd</sup> step: Quantification of Socioeconomic Visions and GHG emission





1<sup>st</sup> step: and 2<sup>nd</sup> Step Setting of Socioeconomic Vision of the region An example of Prefecture S

## Discussing on future visions of the region

**Qualification of the Society vision** 

Based on narrative description of 2030 Society vision such as;

- 1. Powerful cities and industries supported by intra-prefectural and inter-prefectural connections
- 2. Beautiful rural villages, which maintain good nature and landscape

on top of the following prevailing socio-economic trends of this region;







Population index in different regions of the prefecture (Year 2005=100)

Quantification of the vision

Population of three age groups by year

Aged population

Child population

Working-age population



1. Return of the population to the current level and progress of aging;

- 2. Mature economic growth and steady increase of the tertiary industry; and
- 3. Increase of women and elderly people in employment.

Based on these, we designed quantitatively the regional vision in 2030





Quantification of economic and industry visions in the region

- The share of the manufacturing industry is large in the industry of this region, the exports account for a high proportion of the final demands. Therefore, the industry largely depends on the economic trend of the nation as a whole.
- Based on the assumption that per capita GDP in this country will grow by 0.87%, annual per capita GDP growth will be assumed as 0.90% in this region.
- Furthermore, we have estimated further detail with an input-output analysis. Based on assumptions that the service sector grows and the food self-sufficiency ratio in the prefecture increases (about 50% in monetary terms including intermediate input, we have estimated that the shares of the primary and tertiary industries will grow and the secondary industry will decline in the production in 2030.

| Production by industry                           |                   |                  |                |              |  |
|--------------------------------------------------|-------------------|------------------|----------------|--------------|--|
|                                                  | Produ<br>(billior | iction<br>1 yen) | Share in produ | the total    |  |
|                                                  | 2000              | 2030             | 2000           | 2030         |  |
| Primary industry                                 | 95                | 564              | 0.8%           | 4.2%         |  |
| Agriculture and forestry                         | 90                | 531              | 0.8%           | 4.0%         |  |
| Fishery                                          | 6                 | 33               | 0.0%           | 0.2%         |  |
| Secondary industry                               | 7220              | 6470             | 62.3%          | 48.2%        |  |
| Mining                                           | 22                | 10               | 0.2%           | 0.1%         |  |
| Construction                                     | 938               | 985              | 8.1%           | 7.3%         |  |
| Manufacturing                                    | 6260              | 5475             | 54.0%          | 40.7%        |  |
| Tertiary industry                                | 4269              | 6401             | 36.9%          | 47.6%        |  |
| Utilities (electricity, gas,<br>heat, and water) | 102               | 116              | 0.9%           | 0.9%         |  |
| Transportation and<br>communications             | 532               | 1002             | 4.6%           | 7.5%         |  |
| Wholesale/retail and restaurants                 | 541               | 637              | 4.7%           | 4.7%         |  |
| Finance and insurance                            | 314               | 593              | 2.7%           | 4.4%         |  |
| Real estate                                      | 657               | 708              | 5.7%           | 5.3%         |  |
| Service                                          | 1739              | 2612             | 15.0%          | 19.4%        |  |
| Public duties                                    | 335               | 658              | 2.9%           | <b>4.9</b> % |  |
| Unclassifiable                                   | 50                | 74               | 0.4%           | 0.5%         |  |
| Total                                            | 11584             | 13435            |                |              |  |



## **Direct Low Carbon Measures** An example of City K

| Sector   | Low-carbon countermeasure                 | Quantification measur                            | e    | Category<br>(*) | Identified implementati<br>intencity        | ion | Emissions<br>reduction<br>(kt-C02) |
|----------|-------------------------------------------|--------------------------------------------------|------|-----------------|---------------------------------------------|-----|------------------------------------|
|          | Air conditioner                           |                                                  |      |                 |                                             |     | 50.1                               |
|          | Highest energy efficiency air conditioner | СОР                                              | 6.60 | E               | Diffusion ratio (cooling and<br>heating)    | 50% |                                    |
|          | High energy efficiency air conditioner    | СОР                                              | 2.54 | E               | Diffusion ratio (cooling and<br>heating)    | 50% |                                    |
|          | High energy efficiency kerosene heating   | СОР                                              | 0.88 | E               | Diffusion ratio (heating:<br>kerosene)      | 80% | 12.9                               |
|          | High energy efficiency gas heating        | COP                                              | 0.88 | E               | Diffusion ratio (heating: gas)              | 80% | 25.8                               |
|          | High energy efficiency oil water heater   | СОР                                              | 0.83 | E               | Diffusion ratio (hot water:<br>oil)         | 70% | 6.1                                |
|          | Gas water heater                          |                                                  |      |                 |                                             |     | 55.0                               |
|          | Latent heat recovery-type water heater    | СОР                                              | 0.83 | E               | Diffusion ratio (hot water:<br>gas)         | 50% |                                    |
| -        | High energy efficiency gas water heater   | СОР                                              | 0.83 | Е               | Diffusion ratio (hot water:<br>gas)         | 50% |                                    |
|          | Heat pump water heater                    | СОР                                              | 4.50 | Е               | Diffusion ratio (hot water:<br>electricity) | 70% | 48.9                               |
|          | High energy efficiency gas cooker         | Thermal efficiency (base<br>year=1)              | 0.55 | E               | Diffusion ratio (cooking: gas)              | 70% | 12.3                               |
|          | High energy efficiency IH cooker          | Thermal efficiency (base<br>year=1)              | 0.86 | E               | Diffusion ratio (cooking:<br>electricity)   | 70% | 8.0                                |
| L .      | Fluorescent light                         |                                                  |      |                 |                                             |     |                                    |
| cto      | LED (substitute fluorescent light)        | Electricity consumption<br>(conventional type=1) | 2.67 | E               | Diffusion ratio                             | 50% | 24.1                               |
| l se     | Hf inverter fluorescent light             | Electricity consumption<br>(conventional type=1) | 1.33 | E               | Diffusion ratio                             | 50% |                                    |
| olo      | Incandescent light                        |                                                  |      |                 |                                             |     | 51.5                               |
| seh      | LED (substitute incandescent light)       | Electricity consumption<br>(conventional type=1) | 8.70 | E               | Diffusion ratio                             | 50% |                                    |
| inol     | Bulb-type fluorescent light               | Electricity consumption<br>(conventional type=1) | 4.35 | E               | Diffusion ratio                             | 50% |                                    |
| <u> </u> | Refrigerator                              |                                                  |      |                 |                                             |     | 72.1                               |
| -        | Super high energy efficiency refrigerator | Electricity consumption<br>(conventional type=1) | 2.92 | E               | Diffusion ratio                             | 50% |                                    |
|          | Highest energy efficiency refrigerator    | Electricity consumption<br>(conventional type=1) | 2.33 | E               | Diffusion ratio                             | 50% |                                    |
|          | TV                                        |                                                  |      |                 |                                             |     | 31.9                               |
|          | LCD TV                                    | Electricity consumption<br>(conventional type=1) | 2.27 | E               | Diffusion ratio                             | 50% |                                    |
|          |                                           |                                                  |      |                 |                                             |     |                                    |

LoCARNet Annual Meeting,2014

13



3<sup>rd</sup> step: Coupling of Socio-Economic policies and LCD countermeasures

974

500



CO<sub>2</sub> emissions reduction (kt- CO<sub>2</sub>)

800

874

1200



Qu

## Analysis of Socio-Macroeconomic assessments of Alternative LCD Scenarios An example of Prefecture S

• Comparison among one BaU scenario and three alternative CM scenarios

- •CM1:Technocentric scenario, focused on the vitalization of eco-industry in the region
- •CM2: Agrocentric scenario, focused on the regional renewable energy production
- •CM3: Balanced scenario, balanced mix of Technocentric and Agrocentric scenarios

|                                       |   | Seconorio                                      |             | Base    | Pa      |                  | СМ     |                  |        |                  |             |                  |  |  |  |
|---------------------------------------|---|------------------------------------------------|-------------|---------|---------|------------------|--------|------------------|--------|------------------|-------------|------------------|--|--|--|
|                                       |   | Scenario                                       | Unit        | year    | Da      | 0 -              | Balar  | nced             | Techno | centric          | Agrocentric |                  |  |  |  |
|                                       |   | year                                           | _           | 2000    | 2030    | 2030/2000<br>(%) | 2030   | 2030/2000<br>(%) | 2030   | 2030/2000<br>(%) | 2030        | 2030/2000<br>(%) |  |  |  |
| antified<br>argets                    | Γ | GHG emission                                   | ktCO2eq     | 12876.7 | 14369.5 | 11.6             | 6275.8 | -51.3            | 6515.6 | -49.4            | 6425.5      | -50.1            |  |  |  |
|                                       |   | TN load to lake Biwa                           | kt          | 6.7     | 6.6     | -1.5             | 3.3    | -50.7            | 3.3    | -50.1            | 3.3         | -50.3            |  |  |  |
|                                       | 4 | TP load to lake Biwa                           | kt          | 0.38    | 0.39    | 2.6              | 0.09   | -76.3            | 0.10   | -74.9            | 0.10        | -75.0            |  |  |  |
|                                       |   | COD load to lake Biwa                          | kt          | 16.2    | 15.1    | -6.8             | 7.7    | -52.5            | 7.9    | -51.4            | 8.3         | -48.8            |  |  |  |
|                                       | L | Waste final disposal                           | kt          | 377.8   | 400.1   | 5.9              | 168.7  | -55.4            | 173.8  | -54.0            | 182.5       | -51.7            |  |  |  |
|                                       | Γ | Total energy consumption                       | ktoe        | 12145.9 | 13783.2 | 13.5             | 6214.4 | -48.8            | 4506.1 | -62.9            | 8477.8      | -30.2            |  |  |  |
|                                       |   | Population                                     | 1000        | 1396.9  | 1380.8  | -1.2             | 1401.6 | 0.3              | 1378.8 | -1.3             | 1405.3      | 0.6              |  |  |  |
| Social<br>Macro-<br>conomic<br>mpacts |   | Gross Regional<br>Production (GRP)             | Bill. JPY/y | 5884.0  | 7677.0  | 30.5             | 7737.5 | 31.5             | 7708.0 | 31.0             | 7655.1      | 30.1             |  |  |  |
|                                       | 1 | Implementation cost<br>(direct financial cost) | Bill. JPY/y |         | 0.0     |                  | 343.0  |                  | 370.7  |                  | 210.5       |                  |  |  |  |
|                                       |   | Macro-economic impact<br>(GRP change from BaU) | Bill. JPY/y |         | 0.0     |                  | 60.5   |                  | 31.0   |                  | -21.9       |                  |  |  |  |
|                                       | L | Created Job                                    | 1000        |         | 0.0     |                  | 20.1   |                  | 25.7   |                  | 15.6        |                  |  |  |  |

: Targeted for 75%(-0.75) reduction

: Targeted for 50%(-0.50) reduction



## Analyzing procedure



- Base year
- Target year
- Covered sectors
- Actors/Players
- LCS target

Quantifications of parameters:

- Population
- Final demand
- Transport parameters
- Energy service demand generation
- Energy device share
- Power supply assumptions

Setting framework

Setting of Socioeconomic Vision

Quantification of Socioeconomic Visions and GHG emission

Try and error to keep consistency and unity among Socio-Economic policies and LCD countermeasures

Analysis of Alternative LCD scenarios and measures

Design LCD Actions and Roadmaps from the analysis

- Demography
- Lifestyle
- Economy
- Transport
- Building
- Resource
  efficiency
- Energy strategy
- Power supply

Evaluation of Scenarios / measures:

- Transportation system
- Energy service demand generation
- Energy device share
- Power supply options
- Renewable energy
- Carbon sink
- etc.



## Low Carbon Development Action (LCD-A)

- LCD-A is a group of measures and programs for realizing Low Carbon Development. It organizes and totals the scope of the LCD measures, from a view points of implementing and managing the related actions.
- Overall structure of LCD-A is shown with its Work Breakdown Structure (LCD-Work Breakdown Structure, LCD-WBS). It is a graphical format of hierarchical display of deliverable measures and programs, which are further broken down into more detailed deliverables.

LCD-A for Iskandar Malaysia, grouped into three Themes

|    | Action Names                                    | Themes            |
|----|-------------------------------------------------|-------------------|
| 1  | Integrated Green Transportation                 |                   |
| 2  | Green Industry                                  |                   |
| 3  | Low Carbon Urban Governance                     | GREEN ECONOMY     |
| 4  | Green Building & Construction                   |                   |
| 5  | Green Energy System & Renewable Energy          |                   |
| 6  | Low Carbon Lifestyle                            |                   |
| 7  | Community Engagement & Consensus Building       | GREEN COMMUNITY   |
| 8  | Walkable, Safe, Livable City Design             |                   |
| 9  | Smart Growth                                    |                   |
| 10 | Green and Blue Infrastructure & Rural Resources | GREEN ENVIRONMENT |
| 11 | Sustainable Waste Management                    |                   |
| 12 | Green and Clean Environment                     |                   |







Analysis of annual implementation cost for realizing the prescribed GHG reduction target under different cost constraint

5<sup>th</sup> step: Design LCD Actions and Roadmaps from the analysis

An example of Prefecture S study





## Roadmap of LCD Actions (1) An example of Prefecture S study

### Action to make the **City** as harmony-withgreen space



Policy-wise reduction effects (figures are reductions in 2030, unit is kt-CO<sub>2</sub>)

86 Improving heat condition of the city

Improving air-conditioning efficiency of buildings

Reductions in "carbon fixation by using "Made in Shiga" wood" is recorded in "Forest development supporting Biwa lake and lifestyle.





#### Action to make people's Lifestyle changing with "Mottainai"

Adoption of eco point system Promotion of energy-saving products through eco point system Nurture a energy-saving consultant Promotion of energy-saving products through energy-saving consultant (Subsidy for solar water heater) (Installation of solar power generation system using subsidy) (Subsidy for solar power generation system) (Installation of solar power generation system using subsidy) (Installation of solar power generation system without subsidy) (New energy introduction strategy plan) (Technical development for utilizing wood biomass) (Subsidy for wood-burning stove and pellet stove (Enlightment on forest preservation) (Lake Biwa forest development residence tax) (Supporting forest presevation by enterprises) (Utilization of wood biomass energy on houses (Examination on good land for small hydroelectric plant) (Technical development on small hydroelectric plant) (Subsidy for small hydroelectric plants) (Utilization of small hydroelectric plant on houses) Improvement of recycling facilities Standardization of recycled product Promotion of green purchasing Reducing waste from houses Visualization of environmental-friendly actions (Miru Eco Ohmi) Environmental experience program in Laké Biwa ("Umi no ko(children of lake)") Forest environmental experience program ("Yama no ko(children of forest)") Improving experiment and research /providing Plan for promoting environmental learning Developing leaders of experience seminar Agricultural experience program

Experience seminar by Lake Biwa Museum Operating "Environmental Learning Support Center"

Energy-saving behavior on houses

Policy-wise reduction effects (figures are reductions in 2030, unit is kt-CO<sub>2</sub>)

655 Improving machinery efficiency on houses

80 Energy conservation on daily life

Reduction effects of "utilization of natural energy on houses" have been recorded in "Forest development supporting Biwa lake and lifestyle" and "Energy produced by nature."



LoCARNet Annual Meeting, 2014



Improvement of the timetable Further use of bus service through Integrated information system regarding public transportation The electronic pay system Further use of public transportation through electronic pay system Improving the convenience of terminals urther use of public transportation through provement of the convenience of terminals motion of environment-friendly transportation Review of bus routes Giving precedence to public bus Further use of bus service Consider a plan of LRT Making a detailed design of LRT Acquisition of building sites for LRT Building a railroad of LRT Installation of LRT(Light Rail Transit) Consider a plan of Park and Ride Acquisition of building sites for carparks Maintenance of car parks Further use of Park and Ride Plan for promoting utilization Maintenance of cycling roads Rental cycle station /maintenance station Subsidy for motor-assisted bicycles Maintenance of bicycle parking area Running trains/buses practicable of carrying bicycles Restricting the entry of cars Further use of bicycles Revising the land-use plan/the Leading policy of land use Maintenance of public facilities Adoption plan of community currency Circulation of community currency Restricting opening of large suburban shopping mails Revitalizing existing shopping streets Compact City Acquisition of constructing sites for charging stations Constructing charging stations for electric vehicle Planning subsidy for electric vehicle Implementing the subsidy for electric vehicle Eco-friendly cars promotion campaign Promotion of super-small /electric / hybrid cars (Constructing collection system of waste cooking oil) (Operating production facilities of BDF) (Increasing rape-plant acreage) (Establishing a sales network of BDF) (Promotion of BDF(Bio-Diesel Fuel)) Operating a campaign for environment-friendly driving Permation of environment-frienly Consider a plan of freight stations Detailed design of freight stations Acquisition of building sites for freight stations Improvement of freight stations Switching to transportation by train Consider a plan of transportation Detailed design of freight ports Acquisition of building sites for freight ports Improvement of freight ports Switching to transportation by ship Planning land/lake transportation Constructing land/lake transportation

> Shortening the transporting distance through rationalization of distribution

2025

2030

2020

2015

2010



Energy-saving behavior on business places Reductions achieved due to "Utilization of natural energy in agriculture and at business places" are recorded in "Energy produced by nature" and "Forest development supporting Lake Biwa and lifestyle.

Policy-wise reduction effects

manufacturing

offices and stores

kt-CO<sub>2</sub>)

86

1643

ASIA-PA

(figures are reductions in 2030, unit is

aguricultural production

Improving energy efficiency of

Improving energy efficiency of

Improving energy efficiency of

Importation of low-cost and labor saving technology Improving energy efficiency of aguricultural production Promoting production of agricultural products iń season Promoting marketing of agricultural products in season Promoting consumption of agricultural products in season Operating specified entrepreneur system Improving energy efficiency of specified entrepreneur Supporting acquisition of ISO14000s Supporting NPOs promoting "eco-acthion 21" Improving energy efficiency of designated entrepreneur Adoption of ESCO Promotion of energy-saving equipments

Promotion of green purchasing

Promoting recycling of waste

Adoption of recycled product certification Reducing waste from business places

Supporting acquisition of ISO14000s

Supporting NPOs promoting "eco-acthion 21"

Improving energy efficiency of medium and small enterprises

(Subsidy for solar power generation system/solar water heater)

(Utilization of photovoltaic energy/solar heat energy on business places)

(Subsidy for utilization of wood biomass on business places

(Utilization of wood biomass energy on

business places)

(Examination on good land for small hydroelectric plant)

(Technical development on small hydroelectric

(Subsidy for small hydroelectric plants)

(Utilization of small hydroelectric plant on business places)



## Monitoring the progress of LC Development Actions PDCA cycle of LCDAs





#### Program of Reporting GHG reduction plan for Large (specified) Facilities City K, Japan

Reporting of GHG emission reduction plan and its result for Specified Facilities, mandatory, annual, of witch either of the following conditions is satisfied

- 1) Energy consumption more than 1,500 klOE/y
- 2) Transport company operating more than a certain numbers of carriers
- 3) GHG emission more than 3ktCO2/y

149 facilities are listed in 2012





# Some extract of outputs from our recent Asian LCD studies

Per capita emission: 0.6 to 13.4 tCO<sub>2</sub>, Percent reduction from BaU: 22% to 85%, Percent change from Base year: -73% to 657%

|                       |                |                  |                                                                 | Base year information |         |                |                  |                |                      |      | Target year information |            |                           |                        |                      |       |  |
|-----------------------|----------------|------------------|-----------------------------------------------------------------|-----------------------|---------|----------------|------------------|----------------|----------------------|------|-------------------------|------------|---------------------------|------------------------|----------------------|-------|--|
| Coutry<br>/Region     | Region<br>code | Scenario<br>code | Covered sectors                                                 | Year Population       |         | GDP (GRP)      |                  | GHG emission   |                      | Year | GHG emi<br>in Bal       | ssion<br>U | GHG emission with Actions |                        |                      | study |  |
|                       |                |                  |                                                                 |                       | (1000)  | total          | per cap<br>(USD) | total          | per<br>cap<br>(tCO2) |      | ( % cha                 | nge fro    | om base year)             | (% change<br>from BaU) | Number of<br>Actions |       |  |
| Shiga prefecture      | JPN-SIG        | JPN-SIG2030      | Energy, Waste, Forestry, Water<br>pollution, Industrial process | 2000                  | 1397    | 5884 Bill. JPY | 40811            | 12877 ktCO2eq  | 9.2                  | 2030 | 14369                   | (11.6)     | 6276 (-51.3)              | (-56.3)                | 6 Actions            | 2007  |  |
| Kyoto city            | JPN-KYT        | JPN-KYT2030      | Energy, Waste, Forestry                                         | 2005                  | 1470    | 6124 Bill. JPY | 40365            | 8015 ktCO2eq   | 5.5                  | 2030 | 8897                    | (11.0)     | 4586 (-42.8)              | (-48.5)                | 6 Actions            | 2009  |  |
| Dalian province       | CHN-DLN        | CHN-DLN2020      | Energy                                                          | 2007                  | 5721    | 294 Bill. CNY  | 6201             | 46010 ktCO2eq  | 8.0                  | 2020 | 177760 (                | 286.4)     | 123490 (168.4)            | (-30.5)                | -                    | 2010  |  |
| Dalian province       | CHN-DLN        | CHN-DLN2050      | Energy                                                          | 2007                  | 5721    | 294 Bill. CNY  | 6201             | 46010 ktCO2eq  | 8.0                  | 2050 | 651460 (1               | 1315.9)    | 256250 (456.9)            | (-60.7)                | -                    | 2010  |  |
| Guang Zhou city       | CHN-GZ         | CHN-GZ2030       | Energy                                                          | 2005                  | 9600    | 506 Bill. CNY  | 6368             | 98 MtCO2eq     | 10.2                 | 2030 | 336 (                   | 242.9)     | 165 (68.4)                | (-50.9)                | 5 Actions            | 2013  |  |
| Khon Kaen<br>province | ТНА-КК         | ТНА-КК2050       | Energy, Waste, AFOLU                                            | 2005                  | 1750    | 2933 Mill. USD | 1676             | 2372 ktCO2eq   | 1.4                  | 2050 | 7525 (                  | 217.2)     | 5173 (118.1)              | (-31.3)                | 3 Strategies         | 2013  |  |
| Khon Kaen<br>province | ТНА-КК         | ТНА-КК2030       | Energy, Waste, AFOLU                                            | 2005                  | 1750    | 2933 Mill. USD | 1676             | 2372 ktCO2eq   | 1.4                  | 2030 | 5256 (                  | 121.6)     | 3585 (51.1)               | (-31.8)                | 3 Strategies         | 2013  |  |
| Gyeonggi<br>province  | KOR-GYG        | KOR-GYG2030      | Energy, Land use                                                | 2005                  | 10600   | 169 Tril. KRW  | 15348            | 76 MtCO2eq     | 7.1                  | 2030 | 162 (                   | 114.7)     | 126 (67.2)                | (-22.1)                | -                    | 2012  |  |
| Putrajaya<br>district | MYS-PTJ        | MYS-PTJ2030      | Energy, Waste, Forestry                                         | 2007                  | 49      | 1062 Mill. MYR | 5653             | 664 ktCO2eq    | 13.4                 | 2030 | 4186 (                  | 530.4)     | 1780 (168.1)              | (-57.5)                | 12 Actions           | 2012  |  |
| lskandar<br>Malaysia  | MYS-ISK        | MYS-ISK2025      | Energy, Waste, Forestry                                         | 2005                  | 1353    | 36 Bill. MYR   | 6944             | 11 MtCO2eq     | 8.4                  | 2025 | 31 (                    | 174.6)     | 19 (65.8)                 | (-39.6)                | 12 Actions           | 2013  |  |
| India                 | IND            | IND2050          | Energy                                                          | 2005                  | 1103000 | 33 Tril. INR   | 680              | 1292 MtCO2eq   | 1.2                  | 2050 | 7241 (                  | 460.4)     | 3114 (141.0)              | (-57.0)                | 10 Actions           | 2009  |  |
| Bhopal city           | IND-BPL        | IND-BPL2035      | Energy                                                          | 2005                  | 1844    | 70 Bill. INR   | 868              | 3 MtCO2eq      | 1.4                  | 2035 | 12 (                    | 380.0)     | 7 (180.0)                 | (-41.7)                | 7 Actions            | 2011  |  |
| Ahamedabad<br>city    | IND-AMD        | IND-AMD2035      | Energy                                                          | 2005                  | 4700    | 305 Bill. INR  | 1483             | 10 MtCO2eq     | 2.2                  | 2035 | 44 (                    | 332.4)     | 25 (140.4)                | (-44.4)                | 8 Actions            | 2010  |  |
| Ahamedabad<br>city    | IND-AMD        | IND-AMD2050      | Energy                                                          | 2005                  | 4700    | 305 Bill. INR  | 1483             | 10 MtCO2eq     | 2.2                  | 2050 | 86 (                    | 746.1)     | 25 (140.8)                | (-71.5)                | 8 Actions            | 2010  |  |
| Vietnam               | VNM            | VNM2030          | Energy, AFOLU                                                   | 2005                  | 83100   | 818 Tril. VND  | 615              | 151 MtCO2eq    | 1.8                  | 2030 | 601 (                   | 298.0)     | 379 (151.0)               | (-36.9)                | 11 Actions           | 2012  |  |
| Bangladesh            | BGD            | BGD2035          | Energy, AFOLU                                                   | 2005                  | 140000  | 4 Tril. BDT    | 446              | 88 MtCO2eq     | 0.6                  | 2035 | 310 (                   | 252.4)     | 179 (104.1)               | (-42.1)                | -                    | 2010  |  |
| Indonesia             | IDN            | IDN2050CM1       | Energy                                                          | 2005                  | 219000  | 1787 Tril. IDR | 887              | 299 MtCO2eq    | 1.4                  | 2050 | 4341 (1                 | 1351.8)    | 2263 (656.9)              | (-47.9)                | -                    | 2010  |  |
| Indonesia             | IDN            | IDN2050CM2       | Energy                                                          | 2005                  | 219000  | 1/8/ Iril. IDR | 887              | 299 MtCO2eq    | 1.4                  | 2050 | 4341 (1                 | 1351.8)    | 670 (124.1)               | (-84.6)                | -                    | 2010  |  |
| Inaliand              | IHA            | THA2030          | Energy                                                          | 2005                  | 60991   | SULT MIII. THB | 3391             | 185983 ktCO2eq | 3.0                  | 2030 | 563/30 (                | 203.1)     | 324170 (74.3)             | (-42.5)                | 9Actions             | 2010  |  |
| Malaysia              | NAVE           |                  | Energy, Waste, AFOLU                                            | 2005                  | 20128   | 509 BIII. WITK | 5129             | 270710 ktCO2eq | 10.4                 | 2020 | 5335/5                  | (97.1)     | 418/09 (54./)             | (-21.5)                | -                    | 2013  |  |
| Malaysia              | MVS            | MVS2020AP3       | Energy Waste, AFOLO                                             | 2005                  | 26128   | 509 BILL MYR   | 5129             | 270710 ktcO2eq | 10.4                 | 2020 | 741247 (                | 173.8      | 429007 (58 E)             | (-40.3)                |                      | 2015  |  |
| Malaysia              | MYS            | MYS2030LAT       | Energy Waste AFOILI                                             | 2005                  | 26128   | 509 Bill MVR   | 5129             | 270710 ktCO2eq | 10.4                 | 2030 | 741247 (                | 173.8)     | 359837 (32.9)             | (-51.5)                |                      | 2013  |  |
|                       |                |                  | Energy, Waste, Forestry, Water                                  | 2005                  | 20120   | JUJ DIR. WITK  | 5125             | _//// Rtcozeq  | 10.4                 | 2030 | ,4124, (                |            | (32.5)                    | ( 51.5)                |                      | 2015  |  |
| Japan                 | JPN            | JPN2050A         | pollution, Industrial process                                   | 2000                  | 126926  | 520 Trill. JPY | 39690            | 1144 MtCO2eq   | 9.0                  | 2050 | -                       | ()         | 312 (-72.8)               | (—)                    | 12 Actions           | 2008  |  |
| Japan                 | JPN            | JPN2050B         | pollution, Industrial process                                   | 2000                  | 126926  | 520 Trill. JPY | 39690            | 1144 MtCO2eq   | 9.0                  | 2050 | -                       | ()         | 312 (-72.8)               | (—)                    | 12 Actions           | 2008  |  |

LoCARNet Annual Meeting,2014