LOW CARBON SOCIETY RESEARCH NETWORK 4TH MEETING

> 17-18 September 2012 Venue: St. Anne's College, Oxford, UK

Sustainable energy development in Brazil

Marcelo Poppe Center for Strategic Studies and Management CGEE World Global energy sources share

<u>ee</u>

Source: Brazilian Energy Balance 2010

Energy pattern transport sector

Energy ConsumptionTransport Sector - 1975 (%)

Brazil

- Hydro (> 30 MW)
- Thermal ¹
- Nuclear
- ✤ Biomass ²
- Wind
- Small hydro (< 30 MW) 2,00</p>
- Solar ³
- Import ⁴

76,500 MW 16,300 MW 2,000 MW 4,000 MW 1,000 MW 2,000 MW 20 MWp 8,000 MW

(¹) NG, oil and coal
(²) 90% sugar cane bagasse
(³) Around 30,000 stand alone PV systems
(⁴) hydro from Paraguay (Itaipu bi-national) Number of customers: ~ 60 million

Source: Aneel, 2010

GHG emissions

Source: Suassuna, K., MMA, 2011

Brazil

Brazil GHG emissions

Figure 2. Projected Brazilian GHG emissions to 2030 and extrapolation to 2050

Sources: La Rovere et al, 2011 (up to 2030); La Rovere and Raubenheimer, 2011 (2030 to 2050).

Energy efficiency

Energy efficiency

National programs
 PROCEL – Electricity (1985)
 CONPET – Oil & Gas (1991)

Appliances and equipments

- * 1986 Labelling voluntary
- 1993 Awards
- 2001 Minimum performance standards (mandatory)

Market

 Financial resources: utilities energy efficiency obligation (1998), pilot projects support instruments, CDM income, Proesco, ...
 ESCOs deployment and Industry commitment

Brazil

Partnership with INMETRO

Minimum

energy performance standards

CGIEE

(Government, Regulatory Agencies and Society)

Decision level

TECHNICAL COMMITTEES (Research centres, Universities, PROCEL, CONPET, INMETRO, etc.)

Technical level

NEGOTIATION GROUPS (Industry and Government)

Negotiation level

1% of the net income of utilities for R&D and EE (\approx US\$ 300 million/year)

96

Brazil

Proinfa (2002-4)

- 3,300 MW grid connected facilities starting operating up to 2006/9
 - 700 MW biopower
 - * 1,400 MW wind energy
 - * 1,200 MW small hydro power (SHP)
 - * no solar PV power
- 20 years power purchase agreements (PPA) signed with Eletrobrás
- Fixed prices for each source
- 60% minimum national supply of equipment and services

Biopower market

Biopower (4,000 MW)

EstimatedSugar cane15,000 MWRice and paper-cellulose1,300 MWWood?

200 a 1.000

monos de 200

Authorized1Under construction

1,200 MW

400 MW

Sources: MME, CEPEL, ANEEL, CENBIO.

New renewables market

Wind power (1,000 MW)
 Estimated 14
 Authorized
 Under construction

140,000 MW 4,500 MW 1,000 MW

Solar power (20 MWp)
 Estimated

?,000 MWp

Sources: MME, CEPEL, ANEEL, CENBIO.

Possible PV market

Brazil

Accumulated expansion of PV's internal market by sector in MW

New renewables today

- To provide some % of the annual increase of the electricity consumption, in order to diversify power supply and to promote energy security
- To limit impacts in the energy tariff
- To reduce GHG emissions
- To encourage other renewable sources (solar PV)
- Bidding process / green certificates / distinct top prices by source and technology / ...
- Minimum % of national supply of equipment and services

Brazil

Liquid biofuels

Liquid biofuels

World

Reproduced from Unep, February 2009. The environmental food crisis

World

Liquid biofuels

Elaboração MME

Bioethanol consumption

Fontes: MAPA, EIA/DOE Elaboração MME

Source: Doornbosch and Steenblik, OECD 2007

World Bioethanol productivity and energy balance

Biothanol yields (liters per hectare)

Energy Balance

Data represent the amount of energy contained in ethanol per unit of fossil fuel input.

<u>ee</u>

Source: World Watch Institute (2006) and Macedo et al (2008). *Data compiled* by Icone and Unica

Cost perspective of biofuel technologies

World

Sources IEA 2006

Brazil

Biodiesel

Clean fuel programme

- Fuel diversification and green fuel promotion
- Job creation, land use and economic upswing in rural areas
- Reduction of diesel imports
- Main steps
- Quality standards
- Price management

Diesel substitution target

 Production chain: crop growing, transformation and trade

Biodiesel production plants and installed capacity

-

		Installed capacity				
Region	Facilities	mil m³/year	%			
Ν	6	193	3			
NE	6	741	12			
CW	25	2,395	40			
SE	13	1,144	19			
S	8	1,534	26			
Country	58	6,007	100			
Authorized to trade by ANP and registered at MF - position in 30/09/2011						
Legenda: Usinas Com Selo (mil m³/ano)		Usinas Sem Selo (mil m³/ano)				
•	< 25	•	< 25			
	25 - 75	•	25 - 75			
	75 - 150	0	75 - 150			
	> 150	\bigcirc	> 150			

Brazil

Jee

Agro-ecological zoning for palm oil crops

Brazil

NE Ν DF SE

Sugarcane agroindustry

- 25 billion litters produced & 5 billion litters exported
- **Energetic biomass cost = US\$ 1.4/GJ** (industrial countries goal for 2020)
- 420 industrial units (100 new ones)
- >70,000 producers; ~1,000,000 jobs
- Knowledge frontier expansion : genetics, biotechnologies, hydrolysis...

Brazil

Bioethanol for vehicle

- Large experience using bioethanol as mixed fuel for vehicle (1925) ~ 5%
 Proálcool (1975):
 - up to 25% of bioethanol blended in the gasoline (E 25)
 - 5 million pure bioethanol powered cars manufactured
- Flex-fuel motors using the E 25 blend, bioethanol, or a mix of both (2003)
 - 10 million flex-fuel cars manufactured; over 90% of the new car market
- Only E 25 & bioethanol delivered by all the 35,000 Country's fuel station
 1925 1975 2003

Diversifying bioethanol use

New cars air pollution

Bioethanol blend facilitate to reduce the local emissions of Otto cycle vehicles

Source: based on IBAMA, 2006

Brazil Sugarcane technological progress over 35 years

Variety concentration is less than that observed 20 years ago.

Source: Donzelli – CTC (2008)

<u>e</u>e

Percentage of Cultivated Area - Brazil

Source: CTC

Sugarcane genetics

New varieties adapted to local soils and climate and resistent against diseases

Biofactory: quick multiplication

Sugarcane of high biomass: energy cane

Sugarcane industrial water withdraw

Brazil

cgee

Adequada ~ 3.900.855 ha Adequada com limitações ambientais ~ 8.614.161 ha Adequada com restrições ambientais ~ 5.546.510 ha Inadequada ~ 6.741.748 ha

Next generation sugarcane bioenergy

Low impact mechanization

Recycle Hydrolysis Gasification Pyrolysis Biorefineries

Sugarcane social indicators

Brazil

Sugarcane bioindustry

Brazil

Biopower in Country's					
electricity generation					
2007		3%			
2012		6%			
2020*		15%			
	* COG	EN 2008			

Electricil_{CII2=}CII2

Ethano

Business income	2005	2015
bioethanol	39%	54%
bioelectricity	1%	16%
energy	40%	70%

Source: Unica 2009

Ethylene

Hydrocarbon

Bioenergy visionary perception

"I foresee the time when industry shall no longer denude the forests which require generations to mature, nor use up the mines which were ages in the making, but shall draw its raw material largely from the annual products of the fields"

World

[Henry Ford, Modern Mechanics (1934)]

Ford Model A (1896) fueled by pure bioethanol [Fuel Testers (2008)]

World

Green economy perceptions

In the context of the green economy debate, which are the main topics for developing countries among the following ones? (Select up to 2)

- Poverty eradication
- Inequalities reduction
- Easy access to green technologies
- Innovation
- The right to a slower transition to green economy
- Increase of decent jobs
- Preference for technologies that avoid job loss

			Green	
	Poverty	Inequalities	technologies	Innovation
BRAZIL	13,91%	25,46%	19,35%	23,72%
SWEDEN	25,74%	14,85%	27,72%	15,84%
FRANCE	21,13%	15,09%	22,26%	14,34%
INDUSTRIALIZED	27,93%	16,22%	20,72%	11,71%
DEVELOPING	29,03%	17,20%	16,13%	16,13%

Query CGEE – Growth Analysis – IDDRI, May 2012

Green economy perceptions

Which are the main topics for developing countries among the following ones?

Query CGEE – Growth Analysis – IDDRI, May 2012

Concerning the promotion of a green economy,

What sources of energy should be privileged?

Center for Strategic Studies and Management – CGEE Swedish Agency for Growth Policies Analysis – GA Institut for Sustainable Development and International Relations – IDDRI World Green economy perceptions

Concerning the promotion of a green economy,

<u>ee</u>

What key energy technologies should be privileged?

CGEE – Growth Analysis – IDDRI

Global challenge

- Three quarters of the world's energy supply come from fossil fuels, responsible for large local pollution loads and for most of the greenhouse gases emissions.
- The scale on which they are being used will quickly lead to their depletion.
- The world energy consumption should grow as a result of the progress of many of the world's developing regions.
- Industrial countries have not succeeded in reducing energy use without compromising the quality of life, even though it is known that this can and must be done.

The challenge, therefore, is to seek renewable energy sources and to increase efficiencies in energy production and use on an unprecedented scale.

Marcelo Poppe

mpoppe@cgee.org.br

www.cgee.org.br