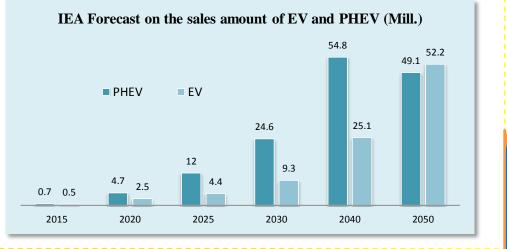
Key Elements for Designing the Technology Roadmap for EV Development -A case study in Shanghai

微源经济与战。

Prof. Wu Libo


Institute for the Changing Global Environment at Fudan University(G-Rice) Fudan-Tyndall Center Center for Energy Economics and Strategic Studies at Fudan University

Background

International

Progress

Ministry of Industry and Information: 《Planning on the development of energy saving and renewable vehicle (2011-2020) 》

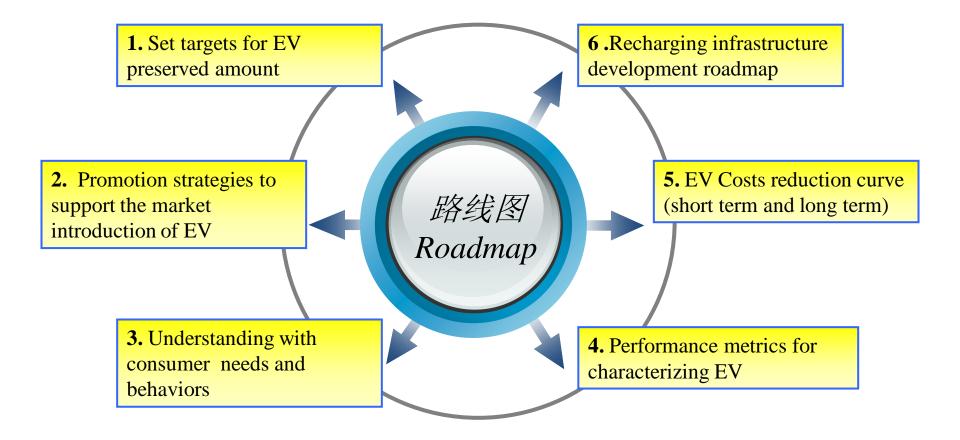
Commercialize the production of EV and PHEV, By 2020, Scale of production and market size rank the NO.1 in the world . Installed number reach 5 million for renewable energy vehicle

Ministry of Science and Technology : 《Specific 12th Five –Year planning on EV technology development》 (draft)

- Enlarge the demonstrative scale of EV and PHEV in public service sector and private sector
- Explore the possibilities of various commercial modes: separate battery from car, renting of battery, renting of entire car
- Strengthening the combination of innovation and commercialization
- Enlarge the technology innovation of recharging infrastructure, strengthening construction, support the market development of recharging equipment

•Promoting of EV is becoming more promising from the political perspective.

•EV and PHEV development are critical for urban transportation system transformation towards low carbonization.


•However, how about the demand side characteristics regarding recharging

Domestic

Road Map Framework

• Road map is essential for reducing uncertainties with the market development. According to the technology roadmap development guideline designed by IEA (2009), we need to conduct researches to look at the following six aspects.

• EVs are unlikely to succeed without strong policy support, particularly in two aspects: (1) making vehicles cost-competitive with ICEs and (2) ensuring adequate recharging infrastructure in place

• Why should the government support EV? Because it serves the public interests in helping us: (1) reducing oil reliance; (2) conserving energy and reducing emissions; and (3) improving grid efficiency.

• To make EVs more cost competitive than ICE vehicles, we calculate the minimum subsidy on investment cost and fuel cost by using TIMES model. We find that the government should subsidize the fuel cost in near-term and investment cost in middle-term. In long term, there is no need for subsidy.

Scenario Analysis of Electric Car Development

SUB_EV: subsidy for each EV

SUB_ELC: subsidy on electricity for using EV

	2020	2030	2040	2050
Subsidy on car (yuan)	2,600	3,000	9,000	3,100
Subsidy on electricity in TIMES (million yuan/PJ)	91	185	490	251
NPV of subsidy per car (yuan) – 20% learning rate	4,990	8,115	17,195	7,047
NPV of subsidy per car (yuan) – 40% learning rate	4,990	6,086	9,672	2,973
NPV of subsidy per car (yuan) – 60% learning rate	4,990	4,058	4,299	881

Note: based on the assumption that on average a car runs 15,000 kilometers a year and consumes 5326.63 KWh/year. We compute NPV of subsidy over a 3-year-period with a discount rate of 5%.

Conclusion 1: to encourage the use of electric car, it is more effective for the government to offer a subsidy on vehicles rather than on fuels in 2020. After that, the decision largely depends on the assumption of the learning rate: at 20% level, subsidy on car is cheaper from 2030 to 2050; at 40% level, subsidy on car is cheaper except in 2050; at 60% level, subsidy on electricity becomes cheaper after 2040.

TPCARELC000: exchange battery model for EV

TPCARELC100: fast recharge model for EV

	Investment Cost (yuan)	Fix O&M Cost (yuan)	Policy (million yuan/PJ)
Base	80,600	5,000	No
MOD_EX	75,000	5,000	Tax: 200
MOD_FRC	100,000	8,000	Subsidy: 100

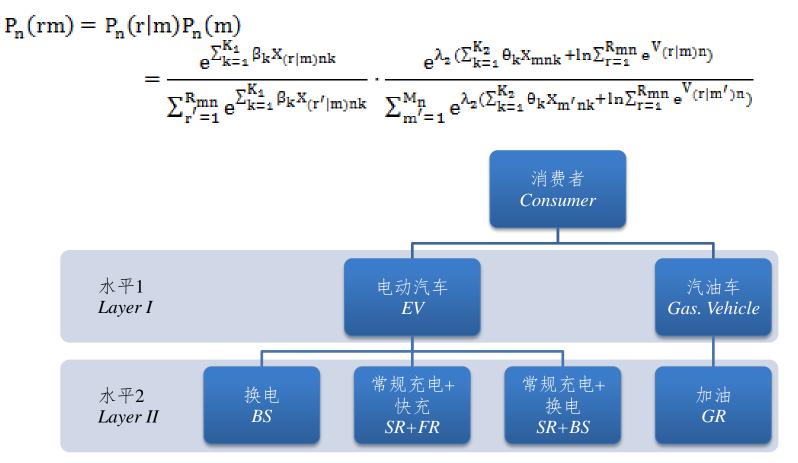
Conclusion 2: the exchange battery model has a cost advantage over the fast recharge model (consistent with the investment plans of State Grid).

Further data calibration: we plan to survey 3,000 families across Shanghai to get more accurate data to compare these two models and the propensity of the consumers among these two models.

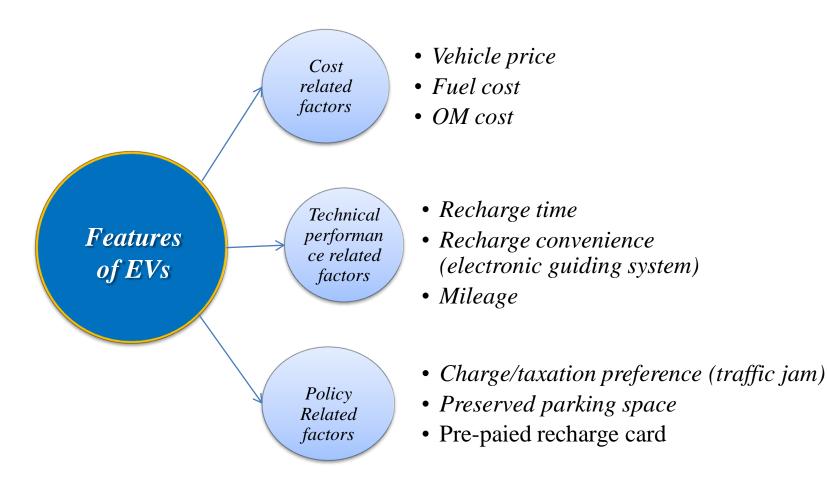
exchange battery model

fast recharge model

• Consumer acceptance of EVs is a key factor determining the ultimate success or failure of EV technologies. Consumers will balance between several factors including investment cost, O&M cost, car performance and energy convenience. Such information is inadequate worldwide.

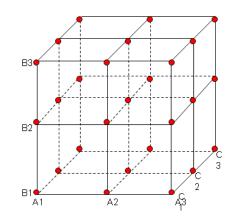

• So in this January we conducted a "willingness to pay" survey in Shanghai. We visited 2,000 households across 10 district areas and asked them to choose between four models of cars.

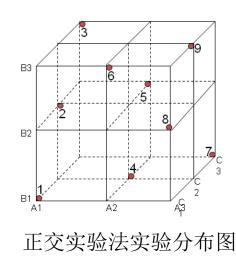
Car Models	被选择的次数占总数的比例 Percentage of Times Being Choosen
Oil cars	23.49%
EV - battery swapping model	27.31%
EV - slow recharging model + fast recharging model	25.46%
EV - slow recharging model + battery swapping model	23.74%



• Utility Maximization: Consumer maximize their objective utility by choosing from different type of vehicles. With respect to quantified features of each type of vehicle, we can describe the objective utility with mathematical expressions.

•Nested Logit Model: Non-linear probability model for utility of multi-layer choice.




• Questionnaire Design

THE REAL PROPERTY OF THE REAL

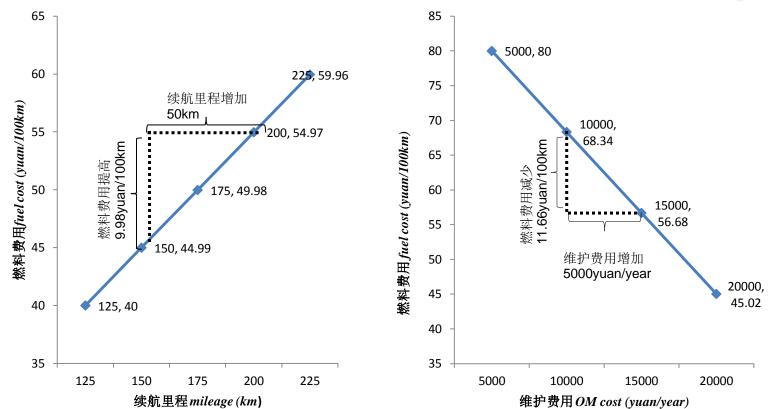
- Consumers' utility is determined by the selective frequencies regarding hundreds of possible combination of aforementioned features. 3⁶=729. Specific methodologies are definitely needed
- Orthogonality experiential methodology: arrange the experiment according to the mathematics principles. This methodology have obvious merits overcoming the overall experiential methodology and simple comparative methodology. This methodology can ensure the representative of sampling and reduce the number of experiments to a great extent

• Questionnaire Design

	汽油车 Gas. Vehicle	换电 <i>BS</i>	快充+常规 <i>FR</i> +SR	换电+常规 <i>BS</i> +SR
Vahiala price		5	15	5
Vehicle price (10^4 Yuan)	15	7.5	20	7.5
		10	25	10
Fuel cost		0.4	0.1	0.3
(Yuan/kilometer)	0.8	0.6	0.15	0.4
(India knometer)		0.8	0.2	0.5
OM anat		6000	30000	8000
OM cost (Yuan/Year)	10000	5000	20000	7000
(Iuan Ieur)		4000	10000	6000
	100%	10%	Car park 100% + Gas station 10%	Car park 100% + Gas station 10%
Recharge convenience (% of current gas station)		50%	Car park 80% + Gas station 30%	Car park 80% + Gas station 25%
		70%	Car park 50% + Gas station 50%	Car park 50% + Gas station 55%
		5min	5min 充满50% + 5H	3H + 3min
Recharge time	5min	10min	10min充满50% + 5H	5H + 3min
		15min	15min充满50% + 5H	8H + 3min
		non	non	non
Policy preference	non	Pre-paied card	Pre-paied card	Pre-paied card
		Preserved park	Preserved park	Preserved park

复旦大学能源经济与战略研究中心

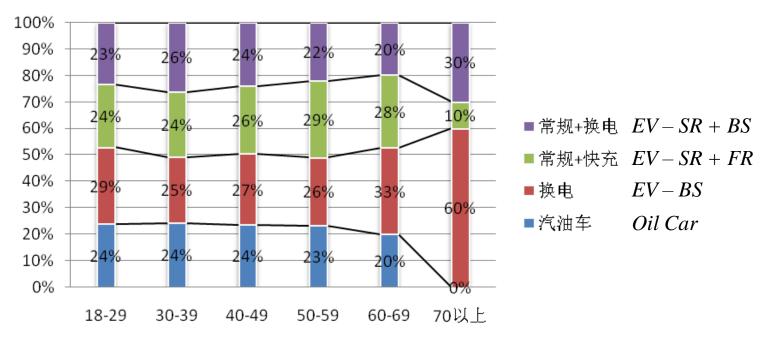
• Estimated Results



Willingness to Pay (substitute for fuel cost/100 km)

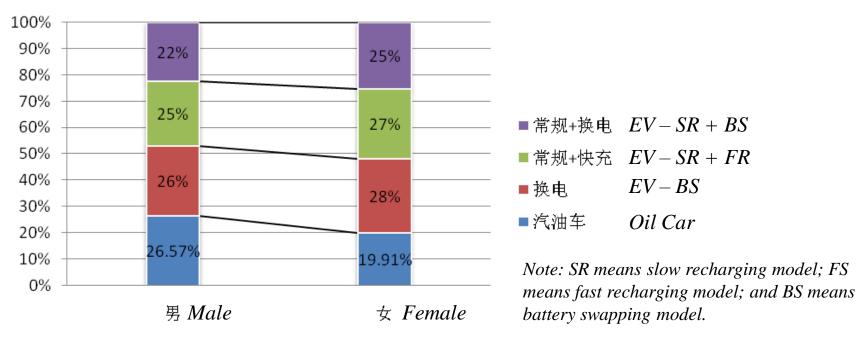
	降低购买价格 Reduce vehicle price 10000 yuan	节约维护费用 Reduce OM cost 5000yuan/year	增加续航里程 Increase mileage 50km	减少常规加能耗时 Reduce slow recharge time 60min
全样本(General)	*	11.66	9.98	10. 75
中收入(mid-income)	*	14.11	8.83	*
高收入(high-income)	*	9.71	9.71	14.03
拥有私家车(Car Possess)	*	10. 45	9.00	3. 21
其中(among which):				
低收入(low-income)	3. 99	*	12.38	41.61
中收入(mid-income)	*	8.39	7.38	*
高收入(high-income)	3. 07	28.59	24. 52	35.00
不拥有私家车(non car possess)	*	12.63	10. 33	19.01

• Economic implications regarding WTP



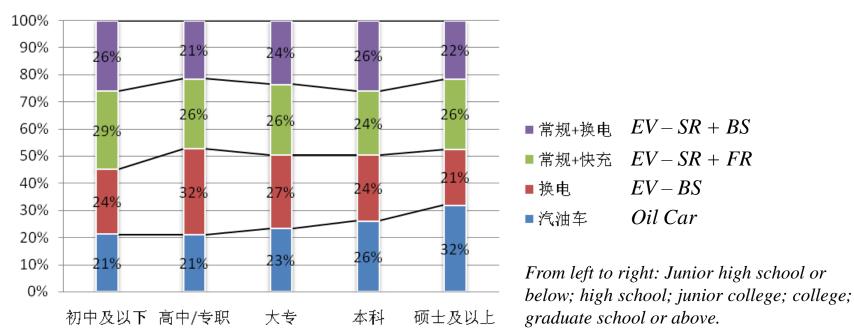
Investment analysis based on WTP: R&D investment lower than 33.63 million yuan would be profitable (WTP of consumer is 9.98yuan/100km in order to improve the mileage by 50 kilometer, optimistic forecast of EV possession is 36700 to 2015, 10000km/year for each EV => total WTP for 50km increase of mileage would be 36700*10000*9.98/100=3363)

电动汽车充电模式选择的年龄分布 The Age Distribution



Key Findings:

Consumers under age 50 are the main forces to buy EV in the future. EV with battery swapping model dominates the group of age 18-29 and age 40-49, while EV with slow recharging and battery swapping model dominates the group of age 30-39. So EV with battery swapping model is most popular among the potential consumers.

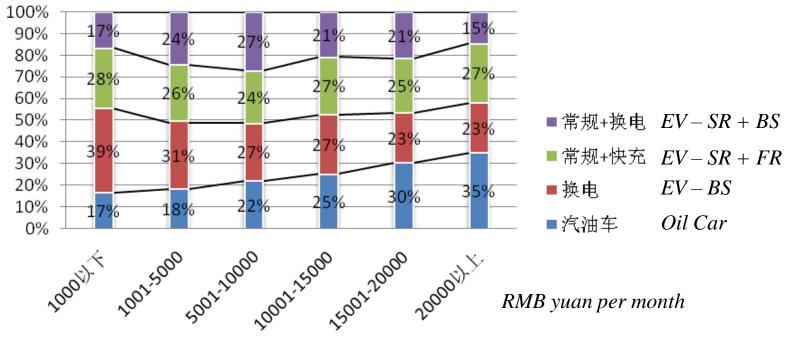

电动汽车充电模式选择的性别分布 The Gender Distribution

Key Findings:

Female is more willing to choose EV than male, mainly because male is more familiar with the car performance thus more difficult to give up oil cars.

Consumer Surveys

电动汽车充电模式选择的学历分布 The Education Level Distribution


Key Findings:

People with higher education level are more likely to choose oil cars, mainly because they usually have higher income and are less sensitive to prices. They tend to pursue the driving performance and brand effect, thus more reluctant to use EVs.

电动汽车充电模式选择的收入分布 The Household Income Distribution

Key Findings:

People with higher income are more likely to choose oil cars, mainly because they are less sensitive to prices and tend to pursue the driving performance and brand effect.

People with lower income prefer to use EV with battery swapping model, which reflects the cost advantage of this model.

Main Factors	影响因子/Coefficient	显著性/significance
Investment cost	-0.00000402%	No
Fuel cost	-0.7292%	Yes
Maintenance cost	-0.0017%	Yes
Driving range	0.1455%	Yes
Energy supply convenience of EV-SR	19.78%	No
Energy supply convenience of EV-FR/BS	-24.80%	No
Waiting time for EV-SR	-0.13%	Yes
Waiting time for EV-FR/BS	-8.66%	No
Administrative measures	NA	No

Key Findings:

Investment cost is not significant but fuel cost and maintenance cost are, which means consumers are more concerned about long-term cost than one-off cost. So the government should subsidize fuel cost and maintenance cost in order to foster the use of EVs.

Only those who own cars and have lower income tend to consider investment cost as a significant factor when buying cars.

• EVs will need to meet various performance-related criteria in order to maximize their market potential. It is urgent for us to identify specific performance metrics in China.

Performance Metrics	IEA's metrics	Our metrics
Leverage	100 km	150 km
Efficiency	0.2 kwh/km	0.3551 kwh/km
Fuel cost	ICE: USD 0.06/km EV: USD 0.03/km	ICE: RMB 0.8/km EV-BS: RMB 0.6/km EV-SR+FR: RMB 0.15/km EV-SR+BS: RMB 0.4/km
Acceleration		inferior to similar IEC vehicles
Safety		
Maintenance cost	should match or exceed that for similar ICE vehicles	ICE: RMB 10,000/km EV-BS: RMB 5,000/km EV-SR+FR: RMB 20,000/km EV-SR+BS: RMB 7,000/km

•*The biggest obstacle for developing EVs is the high cost, especially in battery. We need to set targets for the RD&D in battery technologies.*

指标 Metrics	IEA设定的目标	Targets set by IEA
比能量 Energy Density	体积: 200 瓦/升 重量: 100 瓦/千克	Volume: 200 Wh/litre Weight: 100 Wh/kg
比功率 Power Density	美国制定的目标是600瓦/升	U.S. target: 600 W/L
充放要求 Charge Limits	实现重复深度放电的同时,尽可 能降低对电池寿命的损耗	Designs should allow for repeated deep discharges with minimum battery deterioration
充电耗时 Battery recharge time	10分钟快充能行驶100公里	10 minutes charging for 100 km
电池寿命 Battery life	2,000-3,000次放电,一般能使用 10-15年	2,000-3,000 discharge cycles and calendar life of 10-15 years
电池成本 Battery cost	锂电池成本在2012-15年达到300- 600美元/千瓦时,一辆电池容量为 20千瓦时的电动汽车,成本造价 为6,000-12,000美元	By 2012-15, lithium-icon battery costs for EVs range from USD 300 to USD 600 per kwh. For EVs with 20kwh of capacity, this yields a vehicle cost of USD 6,000-12,000.

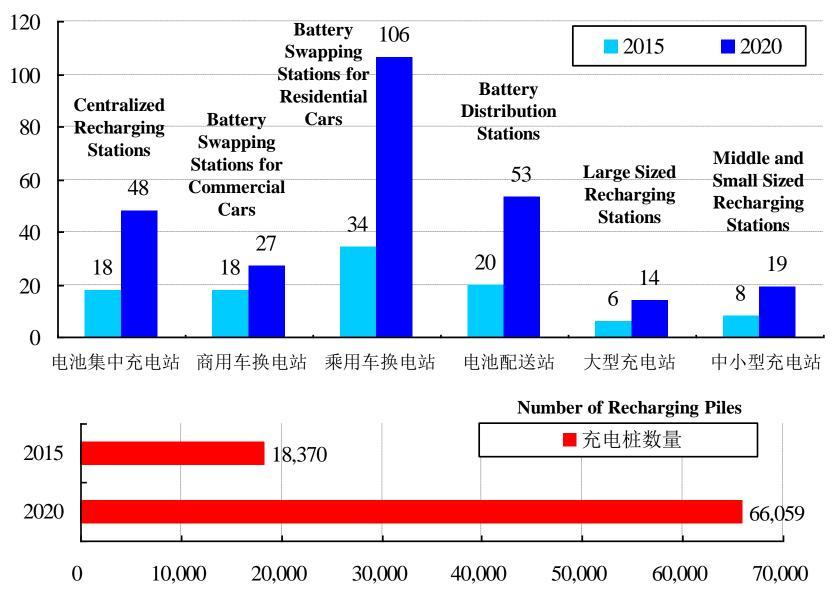
> preserve scale forecast of EV –case in Shanghai

	时间 Year	运营公交 车(辆) Bus	出租车 (辆) Taxi	民用載客汽 车(万辆) Car	常住人口 (万人) Residents	人均收入 (元) Distributed Income per capita
	1996	13323	38554	19.7	1451.0	8 159
Step 1: Forecast the targeted market size	1997	14207	40977		1489.0	8 439
	1998	15282	41183		1527.0	8 773
BUS = 37.746*POP - 0.76*IN - 34600.564	1999	16661	42056	27.7	1567.0	10 932
	2000	17939	42943	32.7	1608.6	11 718
<i>TAXI</i> = 39.944* <i>POP</i> - 0.461* <i>IN</i> - 14596.905	2001	18083	46921	37.2	1614.0	12 883
	2002	18541	47509	45.1	1625.0	13 250
CAR = 0.0217 * POP + 0.00469 * IN - 52.703	2003	18625	48672	54.0		14 867
$DOD = 26.265 \pm 11 \pm 70.4510$	2004	18186	44415			16 683
POP = 36.365 * N + 794.519	2005	17985 17284	<u>47794</u> 48022		<u> </u>	<u>18 645</u> 20 668
$IN = 1.118 * IN_{t-1} - 190.3671326$	2006	17284 16944	48022		1813.5	23 623
$m = 1.110 m_{t-1} = 190.5071520$	2007	16944	48059		1888.5	26 675
60000	2008	16272	450000		1921.3	28 838
	2007	10272	4000000	127.9	1721.5	20 050
50000 40000 30000 20000 10000 0 0 0 0 0 0 0 0 0 0 0 0			3500000 3000000 デ 2500000 デ 2000000 1500000 1000000 500000 0			
2011 2012 2013 2014 2015 2016 20		2019 2020				

步骤二:保有率预测(Forecast the preserve ratio)

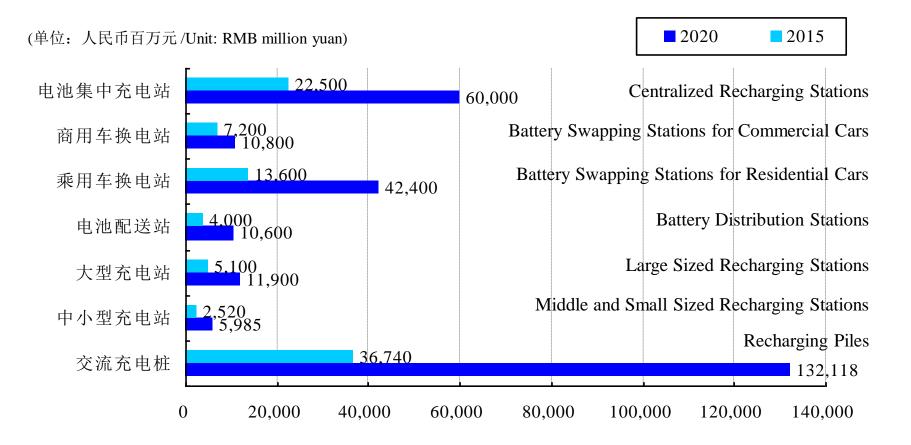
	Targe	rget market		2010年	2015年	2020年
	4	Optimistic		0.29%	7.60%	70.45%
	taxi	Pessimisti	c	0.25%	4.64%	45.29%
	1	Optimistic	C	1.06%	26.06%	86.14%
	bus	Pessimisti	c	0.93%	17.46%	71.92%
		Optimistic	C	0.02%	1.00%	2.00%
	Private car	Pessimistic		0.01%	0.50%	1.25%
☞骤三:保	有量总额预测	140000				132119
forecast the	e preserve am			2015年		
		100000 -		2020年		
		80000 -				
		60000 -				
		40000 -				36739
		20000 -				
		0 +	╺┛╷╺┛	╷╶╷╍┛╷╍┛╷╶╷┛	┃╷┛╷╶╷┙┛╷╺┛╷	
		AN A	HALL C	AND		WI W

•Shanghai government plans to improve the infrastructure system to support 20,000 EVs by 2012 and set up a demonstration project in Jiading District to support 30,000 new energy cars by 2015.


2015年上海电力需求预测 Electricity Demand in 2015	公交车 Bus	环卫车 Sanitation Car	邮政车 Mail Car	出租车 Taxi	私家车 Car
数量 Number	2,606	3,836	3,476	3,606	23,215
每日行驶里程 (公里) Daily driving range (km)	200	40	40	300	40
续航里程 (公里) Driving range of battery (km)	120	120	120	120	120
出勤率 Availability	0.9	0.8	0.8	0.95	0.8
换电池比例 Battery swapping demand	70%	55%	55%	70%	40%
每日换电次数 Daily swapping times	1.67	0.33	0.33	2.5	0.33

2020年上海电力需求预测 Electricity Demand in 2020	公交车 Bus	环卫车 Sanitation Car	邮政车 Mail Car	出租车 Taxi	私家车 Car
数量 Number	8,614	8,367	6,705	26,539	81,894
每日行驶里程 (公里) Daily driving range (km)	200	40	40	300	40
续航里程 (公里) Driving range of battery (km)	240	240	240	240	240
出勤率 Availability	0.9	0.8	0.8	0.95	0.8
换电池比例 Battery swapping demand	70%	55%	55%	70%	40%
每日换电次数 Daily swapping times	0.83	0.17	0.17	1.25	0.17

EV infrastructure includes centralized recharging stations, battery swapping stations for commercial/residential cars, battery distribution stations, large/middle/small sized recharging stations and recharging piles.



● 根据充电设施的数量预测,我们进一步估算出完成这些充电设施建设所需的投资额,在2015年和2020年将分别达到5.5亿元和27.4亿元。

According to the predicted number of recharging infrastructures, we estimate that the investment needed to build up these infrastructures in 2015 and 2020 will reach 0.55 and 2.74 billion yuan.

The construction of EV recharging infrastructures is featured by high one-off investment cost, low returns, long circle and spill-over effect, making these infrastructures more like public utilities. We believe there are three possible business models to build and operate these infrastructures.

I. Government Dominated Model		
The government has a leading role in the construction and operation of EV recharging infrastructure.		
Pros:	Cons:	
 Funding guarantee and risk elusion in the earlier stage of project Can quickly get human resource, materials and money 	 Large financial pressure to the government in the later stage of project Low efficiency of the recharging station due to little demand in economic interest 	

•Promotion model of recharging system

II. Power Company Dominated Model

Power companies include power plants, grid companies and EV-related equipment R&D/production companies.

Power companies own the property right of the infrastructure. They can operate the stations by themselves or ask other special agencies to do that.

The model also needs the government to support by providing land resources, subsidies or tax reductions.

Pros:	Cons:
Extends the investment channel and reduces the financial pressure of the government	
EV-related equipment R&D companies can learn by doing business to improve technology	High investment cost and little customer demand in the earlier stage of project
Power companies can use current power stations to reduce investment cost and develop smart grid	

II. Oil Company Dominated Model

Oil companies such as Petro China and Sinopec can build recharging stations on the basis of current oil stations.

Pros:	Cons:
recharging stations can meet the needs of local car users	 Oil companies have less experience in building and operating power infrastructures Security risks

•We conclude that the power company dominated model is the best way to build and operate the EV recharging infrastructures, while government should give policy support to it and oil companies may attend the construction process. We should also encourage consumers to properly make use of these infrastructures and build up a good environment for EV development in our society.

Thank you!