

#### This is what energy poverty looks like.



PBL Netherlands Environmental Assessment Agency

#### **Trade-offs and synergies between universal electricity access and climate change mitigation in Sub-Saharan Africa**

ANTENEH G. DAGNACHEW PAUL L. LUCAS ANDRIES F. HOF DETLEF P. VAN VUUREN

> LCS-RNET 9TH ANNUAL MEETING 13 SEPTEMBER 2017

> **Twitter: @Antex\_GD**

http://eoimages.gsfc.nasa.gov/





Introduction

Why?

Methodology

How?

Results

What?

**Discussion and conclusion** 

# Introduction



PBL Netherlands Environmental Assessment Agency

# Energy- enabler for basic human needs

**Correlation between HDI, electricity consumption, and electricity access** 

Energy features prominently in international goals and agreements Sustainable Development Goals







United Nations Framework Convention on Climate Change



Agenda 2063

**Paris Climate** 

Agreement





#### **ELECTRICITY ACCESS 2010**





HAVE NO ACCESS TO ELECTRICITY

#### 280 MILLION WITH ACCESS 600 MILLION WITHOUT ACCESS





#### **PURPOSE OF THE STUDY**

## The purpose of the study is to identify key **Synergies** and **trade-offs** between providing universal electricity access and climate mitigation efforts in Sub-Saharan Africa



#### **DISTANCE TO POWER LINE**

Million people







#### **SCENARIOS**

Baseline (BL)

Universal Access (UA) Universal Access with global carbon price (UA-CP) Universal Access with global carbon price except for SSA (UA-NCP)



SSP2

100%

access in 2030

100%

access in 2030

Climate mitigation policies imposed in all regions 100%

access in 2030

Climate mitigation policies imposed in all regions except Sub-Saharan Africa





#### ACCESS RATE 2030 BL







#### HOUSEHOLD DEMAND 2030

#### kWh/Year/HH 6000 **Regional differences** 4000 Urban-Rural differences -6000 0 Republic of Western & Eastern The rest of Africa South southern central Africa Africa Africa





#### **TOTAL DEMAND 2030**

Carbon price stimulates efficiency improvements

**21%** less consumption







#### **ELECTRIFICATION SYSTEMS**







Niger, Chad, Ethiopia, Somalia, Angola, Namibia & Madagascar rely largely on standalone systems Southern and Western Africa can be economically connected to the central grid

Increase in the number of decentral systems

A considerable shift from fossil fuel to renewable under UA-CP!





#### **FUEL MIX**







#### **EMISSION**





*The contribution of SSA's residential sector to global emissions in 2030* 

#### Sub-Saharan Africa regions

- The rest of southern Africa
- Republic of South Africa
- Eastern Africa
- Western & central Africa





#### **ELECTRICITY COSTS**



25-120% increase

The higher the fossil fuel share in the mix,

the higher the cost increase





#### **ELECTRIFICATION INVESTMENT**



27-33 billion USD/year

70-80% goes toward T&D

+ recurring costs- fuel, O&M
+ costs associated with
climate mitigation policy





## CONCLUSIONS

- Synergies between climate mitigation and universal access to electricity
- Imposing carbon price can increase electricity prices in the regions
- The increase in CO<sub>2</sub> emissions due to achieving universal electricity access is small
- Achieving universal electricity access requires at least a tripling of the current annual investments
- RE decentralized systems will play an important role to meet the SDGs





#### **STRENGTHS**

- high resolution data
- dynamic elec. consumption levels
- various technologies

## **UNCERTAINTIES AND WEAKNESSES**

- socio-economic projections
- some aggregated variables
- simplified network design



# www.pbl.nl

## Twitter: @Antex\_GD

# Thank you



### **IMAGE-TIMER MODEL**



Western & central Africa



OREN

HydroWind

Solar

Biomass CCS

Natural Gas CCS

Natural Gas

Oil CCS

Coal CCS

• Share of RES

Oil

Coal

BiomassNuclear

Eastern Africa



#### Republic of South Africa





#### The rest of southern Africa

