Ex-ante Analyses of Carbon Pricing for the Diffusion of Low Carbon Technologies in China's Energy-intensive Sectors

Presenter: Xianbing Liu Joint Research Leader Climate and Energy Area, IGES, Japan E-mail: <u>liu@iges.or.jp</u> Tel.: +81-46-855-3810

Contents of the presentation

- Background and research motivation
 - Components of the LCT policy research at IGES
- LCT deployment changes in response to carbon pricing
- Technology mitigation effect of carbon pricing at the sector level
 - Policy implications and research outlook

Laggard carbon pricing in major Asian economies

	Japan	China	Korea
Targets	 To reduce its 1990 emissions by 6% from 2008-2012 To reduce emissions by 26% from 2013 levels by 2030 (25.4% from 2005) Improving energy efficiency at least by 30% by 2030 To reduce emissions by 80% from 1990 levels by 2050 	 To reduce national energy intensity by 20% by 2010 and to increase renewable energy in the national mix to 15% by 2020 To cut CO₂ emissions per unit of GDP by 60-65% by 2030 compared with 2005 levels Peak at around 2030 and sooner as best efforts allow 	 To reduce by 37% by 2020 compared with BAU levels To achieve 46% improvement of energy efficiency by 2030 To increase renewable energy in the national energy mix to 11% by 2030
Major policies for industrial sector	 Keidanren Voluntary Action Plan GHG Emissions Calculation, Reporting and Disclosure System Feed-in-tariff for renewable energies Subsidies from NEDO, METI and MOEJ Energy-related taxes Carbon tax policy GHG ETS on trial but suspended now 	 Energy Efficiency Standards Top 10,000 energy-consuming firms program in the 12th FYP Subsidies and rewards for energy-saving Differential electricity pricing system Resource-related tax Pilot GHG ETS in 5 cities and 2 provinces Carbon tax policy in discussions 	 Target Management System (TMS) Energy Use Reporting System Energy Audit Requirement Financial subsidies Preferable loans Tax reduction Energy-related tax GHG ETS since 2015 Carbon tax policy in discussions

High barriers for energy saving investment

	Percentage of the samples (%)										
Payback time (Years)	< 0.5	0.5-1	1-2	2-3	3-5	5-10	>10	In total			
China (N=127)	5.5	12.6	30.7	30.7.	13.4	4.7	2.4	100.0			
Korea (N=62)	3.2	12.9	`~. <u>48.4</u>	33	.9	1.6		100.0			
Japan (N=220)	0.5	2.3	7.3	22.3	41.4>>	24.5	1.8	100.0			

a) 1-3 years of PB expected by Chinese and Korean companies.

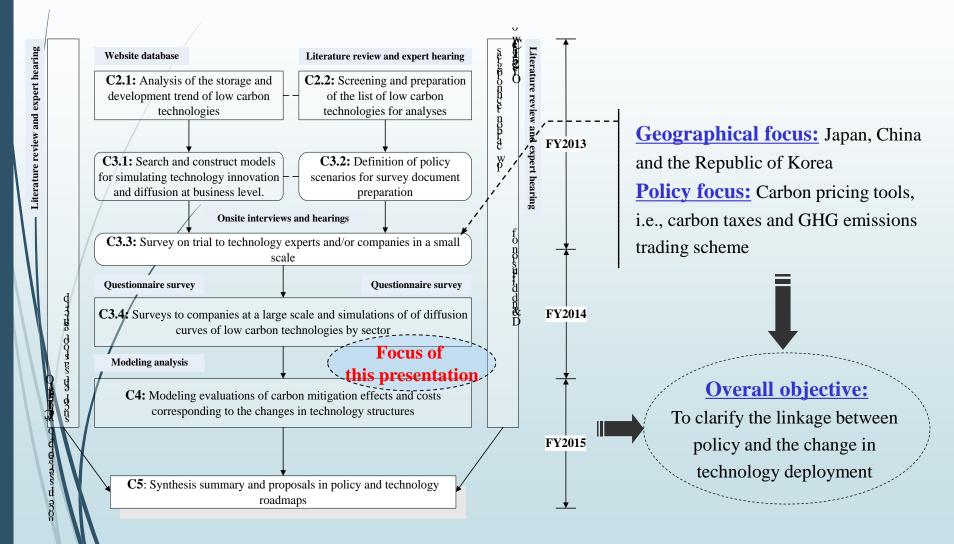
- b) The PB expected by Japanese companies is some longer at 3-5 years.
- c) High expectation to the profitability of energy saving investments Implies the usefulness of carbon pricing policies.

Business reluctance to carbon pricing policies

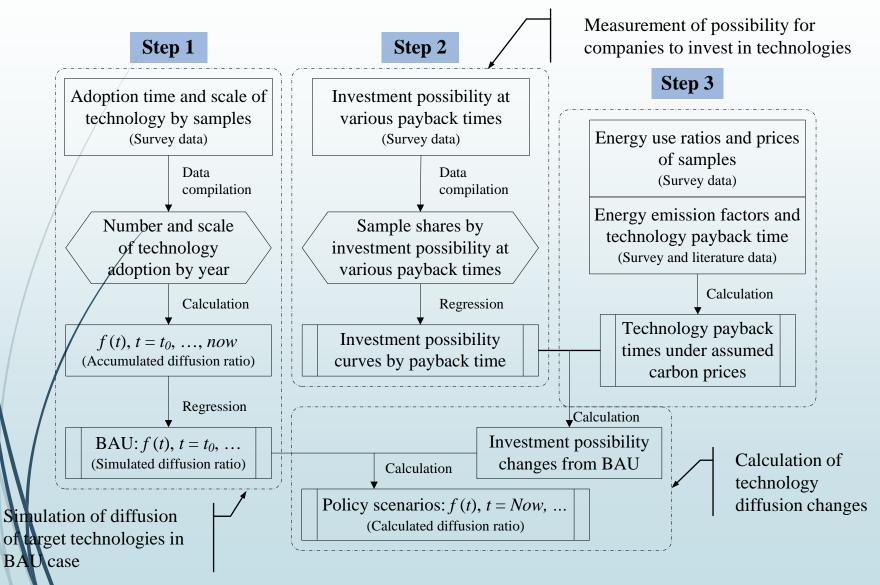
	Delk	aru Trum a	Delieu item	Pol	icy awaren	iess	Policy acceptability			
	Poll	су Туре	Policy item	China	Korea	Japan	China	Korea	Japan	
			Subsidies for energy saving projects	3.75	3.21	2.82	4.19	3.18	3.60	
		Economic incentives	Soft loan for energy saving investments		3.03	1.80		3.43	3.36	
	MBIs		Tax credits for energy saving projects	3.56	3.27	2.83	4.21	3.82	3.79	
	MBIS		Subsidies and grants for energy efficient products		3.31	3.71		3.54	3.66	
		Carbon pricing tools	Carbon tax policy	2.87	2.93	2.74	3.36	2.02	2.63	
			GHG emissions trading scheme	2.86	3.31	2.51	3.61	2.09	2.65	
	Command-and-control		Energy saving target and responsibility system				3.63	3.66		
	regulations (Voluntary a	s (CCRs)	Energy use and GHG emissions reporting system					3.66	3.63	
		approaches	Certification of energy efficient products				3.85		2.73	
	(VAs)		Voluntary energy saving agreements				3.85	3.41	3.10	

Note: The data is the mean of scores. For policy awareness: 1' = `completely unknown'; 3' = `moderate understanding'; 5' = `very clear'. For policy acceptability: 1' = `completely unacceptable'; 3' = `moderate acceptance'; 5' = `fully acceptable'.

Business low affordability of carbon prices


Country	China (N=17	70; Unit: Y	/uan/t-CO ₂)	Korea (N=62; Unit: KRW/t-CO ₂)						
Sector	Iron & steel Cement (N=34) (N=17)		Chemical (N=27)	Iron & steel (N=11)	Cement (N=5)	Chemical (N=20)				
MEANAFFORD	8.8% 7.7%		9.9%	2.5%	2.8%	2.6%				
Affordable carbon price	42.7	38.6	83.7	3,770	2,600	3,950				
Country Japan (N=230; Unit: JPY/t-CO ₂)										
Sector	Food proces (N=29)	U	Chemical (N=26)	Iron & steel (N=11)		Electronics (N=12)				
MEANAFFORD	2.0%		3.1%	1.5%		2.6%				
Affordable carbon price	683	683		426		801				

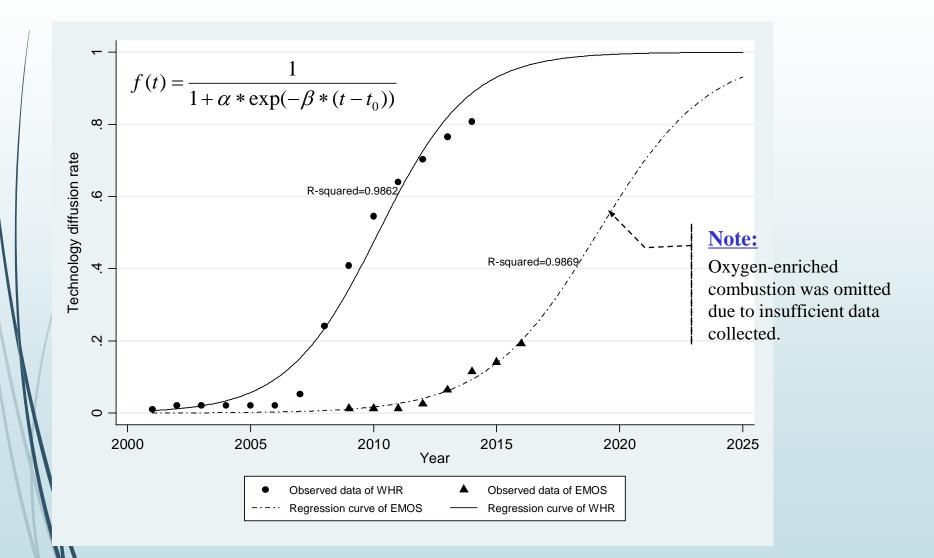
- a) Similar acceptable ratios in energy cost increases due to pricing of carbon for companies of Japan and Korea, which are much lower than Chinese companies;
- b) Similar range of carbon prices affordable for companies in Japan and China (5-13 \$/t-CO₂);
- c) Carbon prices affordable for Korean companies are 2.3-3.5 \$/t-CO₂;
- d) The business affordability is much lower than the price level needed for realizing
 - mitigation pledges of the three countries.


Contents of the presentation

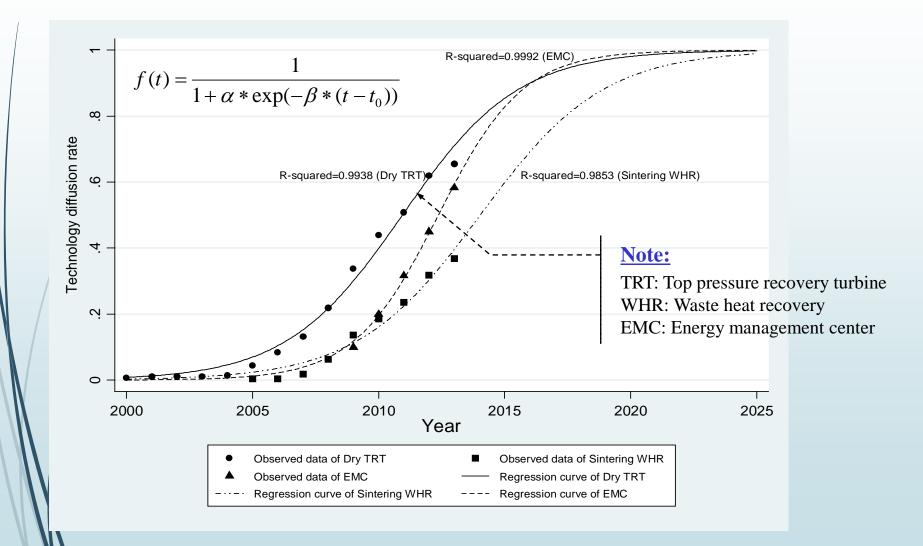
- Background and research motivation
- Components of the LCT policy research at IGES
- LCT deployment changes in response to carbon pricing
- Technology mitigation effect of carbon pricing at the sector level
 - Policy implications and research outlook

Components of LCT policy studies at IGES

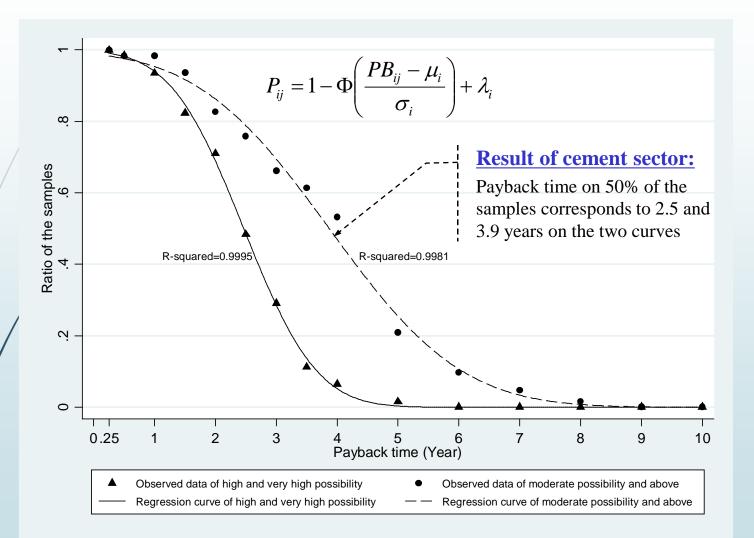
Procedures of ex-ante analysis of LCT diffusion

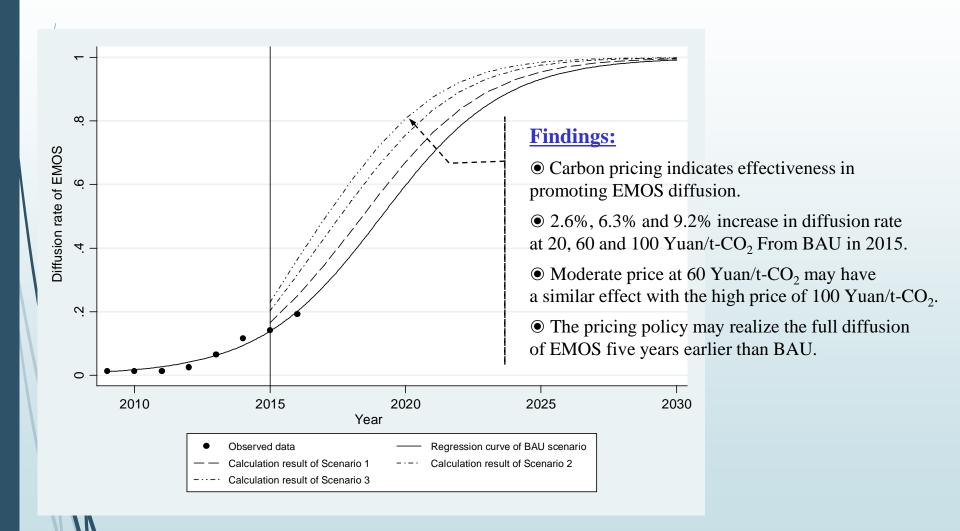


Case studies: Cement and iron & steel sectors in China

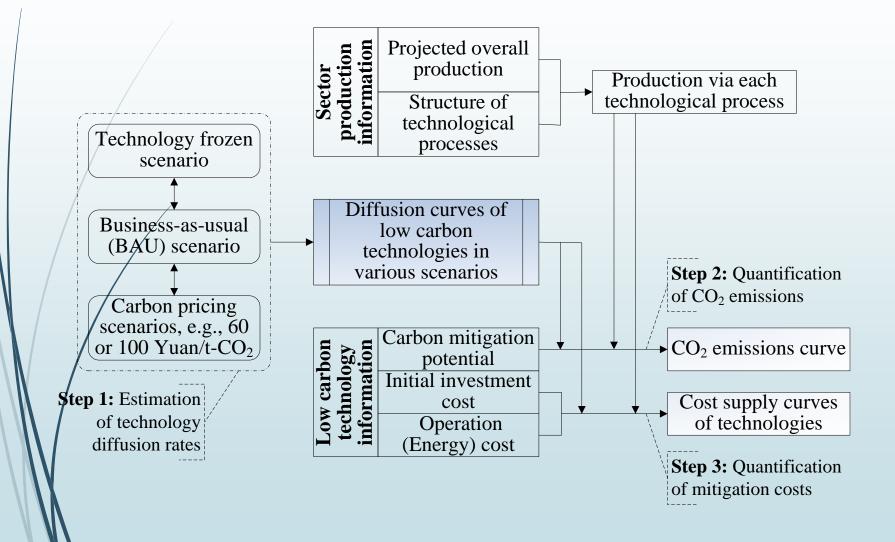

- Questionnaire content: a) Company basic information; b) Energy saving management and adoption of target technologies; c) Factors determining LCT investment; d) Policies in promoting technology diffusion
- *Implemented period:* November, 2014 to February, 2015
- Coordinated by: China Cement Association; and, China Metallurgical Industry Planning & Research Institute

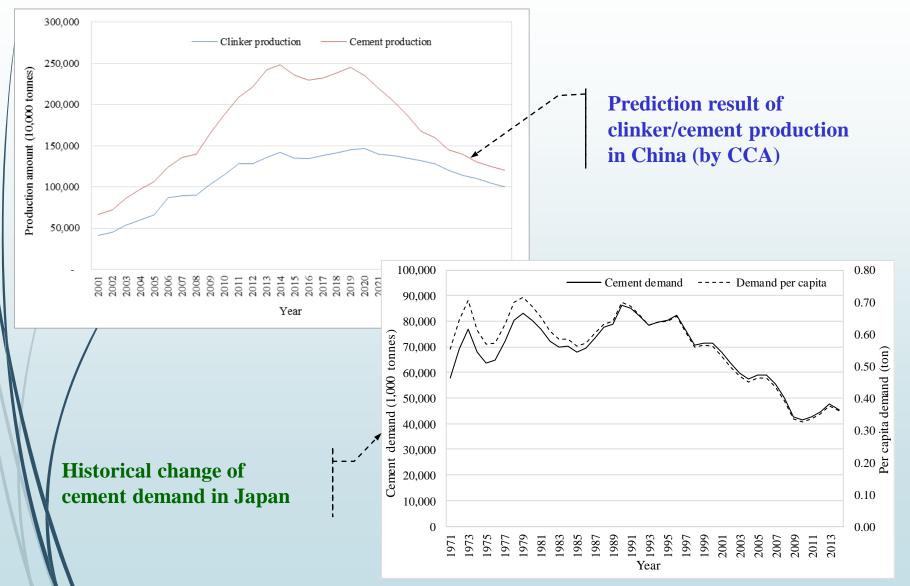
Cement (Iron & steel)												
Number of employees			Ownership				Number of employees			Ownership		
Category	No.	%	Category	No.	%		Category	No.	%	Category	No.	%
Below 100	1	1.3	State-owned	53	67.9		1,000-2,000	4	6.7	State-owned	39	65.0
100-300	25	32.1	Domestically private	9	11.5		2,000-5,000	11	18.3	Domestically private	17	28.3
300-1,000	43	55.1	Joint-venture	13	16.7		5,000-10,000	16	26.7	Joint-venture	4	6.7
Over 1,000	9	11.5	Fully foreign-funded	1	1.3		Over 10,000	29	48.3	Fully foreign-funded	0	0.0
In total	70	8 100.0	Others	2	2.6		T 1	60		Others	0	0.0
	78		In total	78	100.0		In total			In total	60	100.0


Technology diffusion curves: Cement industry

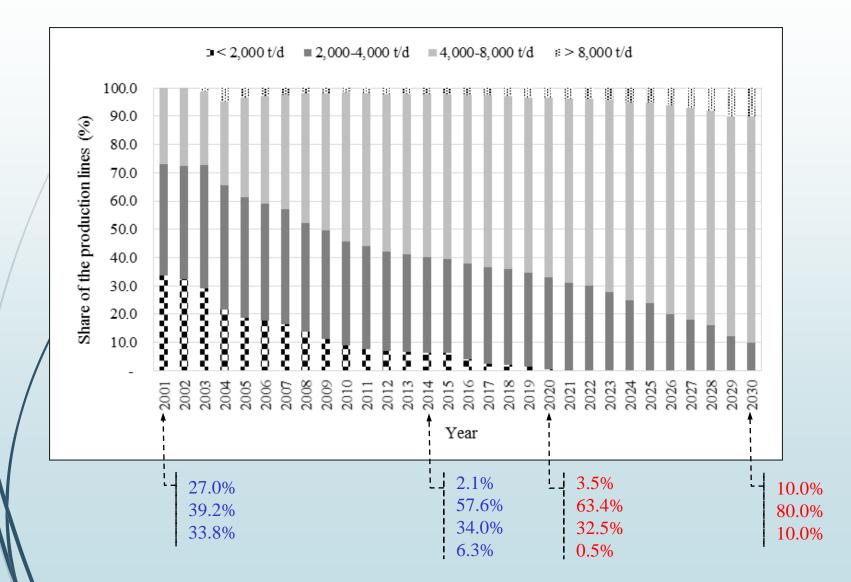

Technology diffusion curves: Iron & steel industry

Investment possibility under various payback times

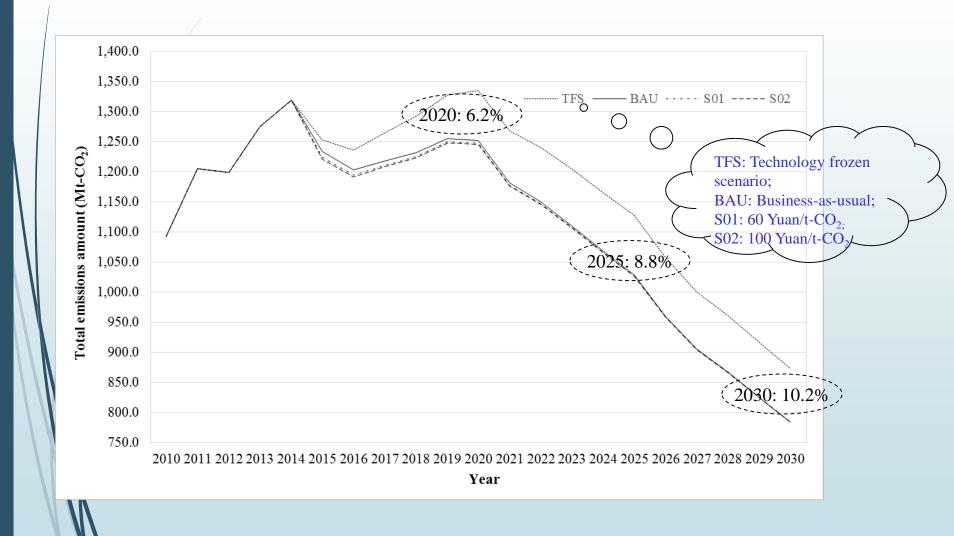

An example: EMOS diffusions in various carbon prices

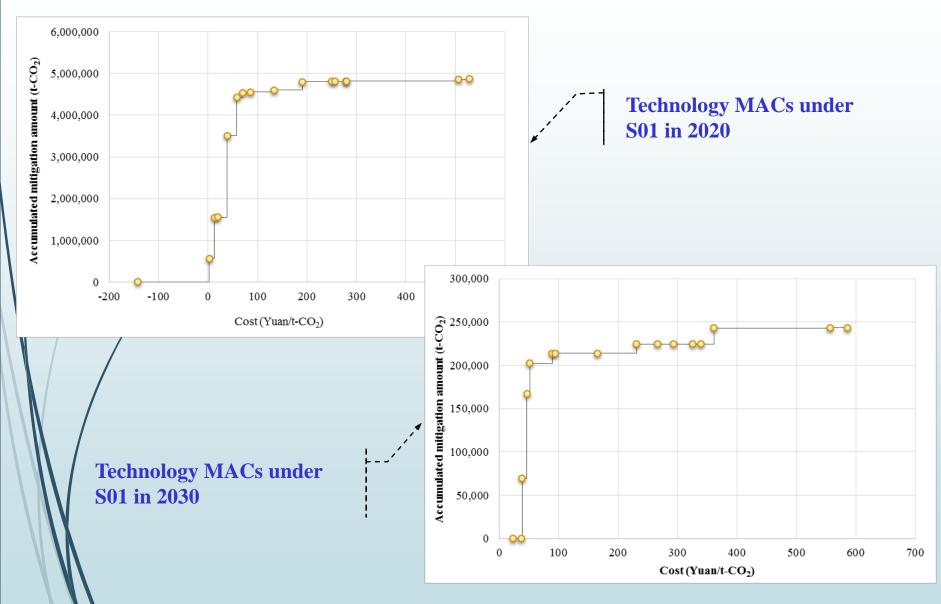

Contents of the presentation

- Background and research motivation
- Components of the LCT policy research at IGES
- LCT deployment changes in response to carbon pricing
- Technology mitigation effect of carbon pricing at the sector level
 - Policy implications and research outlook


Process for estimating the mitigation at sector level

Statistics and prediction of cement production in China


Distribution of NSP kilns by the scale


LCT of cement industry covered in the analysis

No.	Technology lever	Process	Name of technology	Code
1		Raw material	Vertical mill for raw materials preparation	T01
2		and fuel	Roller press grinding system for raw materials preparation	T02
3		preparation	Vertical mill for coal preparation	T03
4			Efficient pre-heating and pre-calcination system	T04
5			Efficient pulverised coal burner	T05
6		Clinker	Enriched oxygen combustion technology	T06
7	Energy efficiency	making	Fourth generation clinker grate cooler	T07
8	improvement		Efficient insulation materials technology	T08
9			Waste heat recovery power generation (WHR)	T09
10		Comont	Ball mill and roller press grinding for cement grinding	T10
11		Cement	Vertical mill for cement grinding	T11
12		grinding	Cement grinding aids	T12
13		Whole	Motor system frequency control retrofit	T13
14		process	Energy saving management and optimization system (EMOS)	T14
15	Alternative fuels and		Alternative fuels	T15
16	raw materials		Alternative raw materials (carbide slag)	T16

Calculation results of emissions in various scenarios

Technology abatement costs

Contents of the presentation

- Background and research motivation
- Components of the LCT policy research at IGES
- LCT deployment changes in response to carbon pricing
- Technology mitigation effect of carbon pricing at the sector level
 - Policy implications and research outlook

Policy implications and research outlook

- Full diffusion of energy saving technology takes 10 to 20 years after the initial commercialization.
- Certain technology mitigation potential remains in China's energy-intensive sectors.
- Effect of carbon pricing varies for the diffusion of technologies with different features.
- A moderate carbon price would generate limited effect in CO₂ mitigation;
- Most technology mitigation can be achieved at the low costs.
- Earlier carbon pricing is advised by addressing its interaction with existing policies.
- Necessary to focus on the innovative and breakthrough technologies from a longer perspective.
- The analysis of comprehensive policy mixes would be a challenge.
- To identify innovative business models is another topic with added value for low carbon transitions.

References

- Liu, X.B. et al., 2014. The Feasibility of Pricing of Carbon Emissions in Three Northeast Asian Countries: Japan, China and the Republic of Korea. IGES Policy Brief, No.29, April, 2014.
- Liu, X.B. et al., 2016. Carbon pricing for low carbon technology diffusion: A survey analysis of China's cement industry. Energy 106(2016), 73-86.
- Liu, X.B., Gao, X., 2016. A survey analysis of low carbon technology diffusion in China's iron & steel industry. Journal of Cleaner Production 129(2016), 88-101.
- Liu, X.B. et al., 2017. An estimation of the effect of carbon pricing for CO₂ mitigation in China's cement industry. Applied Energy 185(2017), 671-686.
- Liu, X.B., 2017. Carbon Pricing to Accelerate the Diffusion of Low Carbon Technology in China. IGES Policy Brief, No.40, June, 2017.

Thank you for your attention!