Scenario analysis on mid-century low emission pathways in Japan

Ken Oshiro Mizuho Information & Research Institute, Inc.

July 17, 2018. LCS-RNet 10th Annual Meeting, Yokohama

1

Japan's mid- to long-term mitigation targets

- COP3, Kyoto: 6% reduction between 2008-2012 (wrt. 1990)
- Former prime minister, Mr. Abe announced Cool Earth 50: 50% reduction by 2050 globally (May)

2008	 Mr. Fukuda: 60-80% reduction by 2050 (June) G8 Toyako Summit: at least 50% reduction by 2050 	(Julv)		
	 Mr. Aso: 15% reduction by 2020 (wrt. 2005) (June) (2009.9 Change of administration) Mr. Hatoyama: 25% reduction by 2020 (wrt. 1990) 	Mid-term Target Committee (The Cabinet)		
2009		Task Force on Global Warming (The Cabinet)		
2010	(September)	Mid- and Long-Term Roadmap subcommittee (Central Environment Council)		
2011	(2011.3 the Great East Japan Earthquake)	Energy and Environment Council (Council on National	ittee on Subcommittee on strategies Fundamental Issues (Advisory cafter 2013 Committee on Natural	
2012	 The 4th Basic Environmental Plan (April) The Innovative Strategy for Energy and the Environment: about 20% reduction by 2030 (wrt. 1990) (September) (2012 2 Change of administration) 			
2013	 Global Warming Countermeasures to implement Car (November) 	ncun Agreements: 3.8% reduct	ion by 2020 (wrt. 2005)	
2014		Subcommittee on Global Warming Measurement after 2020 (Central Environment Council)	INDC WG (Industrial Structure Council)	
2015	• INDC: 26.0% reduction by 2030 (wrt. 2013) (July)	Round Table on the Long-term Climate Change Strategy (Ministry of Environment)		
2016	 The Plan for Global Warming Countermeasures: 80% reduction by 2050 (May) 	Subcommittee on the Long-term Low Carbon Vision (Central Environment Council)	Platform on the Long-term Global Warming Countermeasures (Industrial Structure Council)	
20xx	The Long-term Low Greenhouse Gas Emissions Development Strategies			

Overview of AIM

Decarbonization scenario analysis in Japan using AIM/Enduse

- 1. Scenario analysis on the NDC and 2050 goal in Japan
 - NDC (-26% in 2030) and the 2050 goal (-80% in 2050)
- 2. Assessment of net-zero emission pathways by 2050
 - Mid-century pathways corresponding to the 1.5°C goal
- 3. Mid-century pathways consistent with the well-below 2°C target
 - Multi-model analysis on national pathways under the WP3 of CD-LINKS

AIM/Enduse [Japan]

- Bottom-up of end-use sectors, hard-linked with energy supply sectors
- Recursive dynamic model
- Minimizing total system costs; capital, O&M, and emission costs

1. Scenario analysis on the NDC and 2050 goal

- Japan submitted its INDC on July 2015, which is to reduce GHG emissions by 26.0% in 2030 below the 2013 level.
- According to the Plan for Global Warming Countermeasures published on May 2016, Japan aims to reduce greenhouse gas emissions by 80% by 2050 as its long-term goal.
- However, quantitative analysis regarding consistency between the 2030 and 2050 targets is not yet provided.
- This study assess emissions pathways by 2050 considering both the 2030 target (NDC) and the 2050 target (long-term goal) using AIM/Enduse [Japan].

<u>Cases</u>

- 1. <u>Reference</u>
- 2. <u>NDC-Extended:</u> Implicit carbon prices are implemented to meet the NDC by 2030. Between 2030 and 2050, carbon prices are constant.
- 3. <u>NDC-80:</u> Implicit carbon prices are implemented to meet the NDC by 2030, and strengthened thereafter toward the 80% reduction by 2050.
- 4. <u>Immediate-80:</u> Compared with NDC-80, higher carbon prices are implemented by 2030 to the level of around a half of 2050.
- 5. <u>No nuclear:</u> Meeting both the 2030 and 2050 target without restart of nuclear power.

GHG emissions by sector

 Residential and commercial sectors are almost decarbonized in 2050 to meet the 2050 target.

Oshiro, K., Masui, T., Kainuma, M. (2017). Energy Policy.

Primary energy mix

- Energy efficiency and low-carbon energies are key options
- Share of low-carbon energies (NDC-80):
 - > 12% in 2030, 59% in 2050
- Innovative technologies such as CCS could be important options by 2050

Electricity supply

- Renewables account for 23% in NDC-80, 30% in Immediate-80 in 2030. In 2050, electricity is almost decarbonized.
- Integration of variable renewable energies (VREs) is challenge after 2030

Final energy consumption

- Energy efficiency continues to be a key option by 2050
 > Around 10-11% in 2030, 43% in 2050 (wrt. 2010)
- Electrification is another challenge, especially after 2030.
 - > Around 28% in 2030, 46% in 2050

Key insights from the NDC and 2050 goal assessments

- Japan's NDC would be effective to consolidate a transition from the baseline trajectory, by improvement of energy efficiency and deployment of low-carbon electricity.
- The 80% target by 2050 requires significant electrification in end-use sectors as well as the acceleration of energy efficiency and decarbonization of electricity between 2030 and 2050.
- The implementation of NDC is meaningful, however, rapid transformation of energy systems would still be required to meet the national long-term goal.

2. National zero-emission pathway by 2050 in Japan

- According to the previous studies on global 1.5°C pathways, CO₂ emissions needs to be net-zero around 2050 globally (Rogelj et al. (2015)).
- Assessing national net-zero emission pathways by 2050 using AIM/Enduse [Japan], mainly focusing on:
 - difference of energy system transformation with the 2°C scenario (80% reduction by 2050)
 - the role of technologies, such as negative emission and nuclear
- BECCS was added to the technology options in AIM/Enduse[Japan]

Transformation of Japan's energy system to attain net-zero emission by 2050

Ken Oshiro, Toshihiko Masui & Mikiko Kainuma

Oshiro, K., Kainuma, M., & Masui, T. (2017). Transformation of Japan's energy system to attain net-zero emission by 2050. Carbon management, (in press)

Net-zero emission pathways in Japan

- BECCS is required in zero-emission. 80% reduction is achievable without BECCS
- Phase-out of nuclear power would not compromise zero-emission
- If following the NDC, drastic emission reduction is required after 2030
- Zero emission pathway results steep rise in CO₂ price, more than 2,000 US\$/t-CO₂ in 2050

CO₂ price (US\$/t-CO₂)

Emission	Technology availability			
constraint	Full	w/o BECCS	Nuclear phase-out	
Ref	0			
INDC-2deg	520	860	570	
INDC-1.5deg	2,490	-	3,150	
1.5deg	2,200	-	2,640	

Sectoral challenges to zero emission

- Power sector requires large-scale transformation.
- Difference between net-zero and 80% reduction is moderate in the buildings and industry sector.
- Buildings sector needs to be almost decarbonized even in 80% reduction.

Sectoral direct CO₂ emissions

Energy system transformation in power sector

- Dependence on VREs, such as solar and wind, as well as BECCS.
- Given phase-out of nuclear, challenges to integrate VREs are exacerbated.

Electricity generation

Energy system transformation in energy demand sectors

- Buildings sector: completely electrified by 2050 even in the 80% reduction
- Transport sector: switch to BEV and FCEV

Final energy demand by sources in the buildings and transportation sectors

Conclusions

- Three pillars of decarbonization are confirmed both in the 2°C and 1.5°C scenarios; energy efficiency, decarbonizing electricity, and switch to low-carbon carriers.
- National mitigation pathways corresponding to the 1.5°C goal require to enhance mitigation efforts, especially in the energy supply sectors.
- These key pillars are robust across different models, however there is wide variation in the options for energy system transformation.

Acknowledgements: This research was supported by the Environment Research and Technology Development Fund (2-1702) of the Environmental Restoration and Conservation Agency.