The Role of GHG Mitigation in Land Use and Forestry to Indonesia Economy

Marissa Malahayati^{1,2}, Toshihiko Masui²

¹⁾ Tokyo Institute of Technology
 ²⁾ National Institute for Environmental Studies

LoCARNet 7th Annual Meeting Program November 21-22, 2018 Arya Duta Hotel- Jakarta

Introduction

Indonesia Economy depend on Forestry and Commercial Plantation even since 1960 until now

VS

 Fastest Deforestation rate (Reuters, 2007, The Guardian, 2014)

Top 5 GHG emitters
 → Mostly because
 AFOLU sector

Paris Agreement → National Determined Contribution

Emission reduction 29% (41%) from BaU in 2030

Objectives

- How mitigation may affect economy and environment?
- How much the GDP loss by doing mitigation action?

Computer General Equilibrium + Land Allocation Matrices

> To add information of land

The importance of FOLU sectors for Indonesia

5 4

3

2

Ω

AGR

Source: Writer Calculation

FOR

MAN

■ 2000 ■ 2005 ■ 2008

TRA

SER

- GDP shared of AFOLU sectors is the third largest in Indonesia.
- However, if multiplier effect is considered, the multiplier effect of forestry and plantation sector are the highest
- Mitigation in land-based sector will have impact on environment and economics

Sector	29%	38%
Forestry and peatland	59.3	60.2
Waste	1.31	2.61
Energy and		
Transportation	37.9	36.61
Agriculture	1.1	0.34
Industry	0.34	0.29

• Ambitious emission reduction from the forestry and peatland, although there is the reality that predicting the emission from these sectors aren't easy because it should predict the land conversion.

Concept of AIM/CGE (Computable General Equilibrium)- General Picture

SUPPLY SIDE

Land Allocation Matrix (in ha)

- To fit the model specification, we aggregated the Land Allocation Matrix so it fits the sector in the CGE.
- The CGE then combined with the land matrix.
- For Land→ land will converted into another land use that more profitable by considering the resource they use.

 Limitation → cost and/or additional input (capital/labor) for the land use change between one sector to another.

	PAD	COR	CAS	OAG	RUB	PAL	OPL	LIV	W00	OFO
PAD	6,881,200	4,855	2,662	23,142	739	1,491	985	0	420	105
COR	13,432	2,603,034	35,224	305,663	35,448	71,534	47,261	45	26,540	6,555
CAS	7,365	35,238	1,424,478	168,133	19,627	39,608	26,168	25	14,695	3,630
OAG	64,018	305,711	168,090	13,568,596	169,587	342,227	226,102	213	126,969	31,363
RUB	1,933	39,141	22,115	186,087	3,845,311	269,302	177,745	22	44,859	11,109
PAL	3,901	78,987	44,629	375,527	269,302	8,033,000	358,630	45	90,525	22,418
OPL	2,576	52,187	29,485	248,114	177,747	358,633	5,181,575	30	59,809	14,812
LIV	400	512	282	2,443	517	1,043	689	3,247,000	252	63
W00	3,741	30,678	16,965	146,697	45,239	91,292	60,316	17	5,583,731	10,899
OFO	1,035	13,275	7,339	63,470	35,854	72,343	47,756	204	23,377	87,777,641
	Note	Text	: Own secto	r						
		text	: highest co	nverted land						
Vood	PAD COR CAS OAG RUB PAL Other OPL		con			TADIC				
	UIV WOO OFO CAPIT	AL			10	IADLE				

Scenarios

No	Scenario	reduce deforestation	reforestation	energy efficiency	
1	BaU	no	no	no	
2	DDPP_1	yes	no	no	
3	DDPP_2 yes		yes	no	
4	INDC1	yes	no	yes	29% of CO2
5	INDC2	yes yes		yes	reduction in 2030
Including yield improvement and reducing the rate of deforestation				n 2030, it is assu the energy-relate technology able t emission by 38%	imed that all ed mitigation to reduce

Study Limitation:

- Still haven't introduce details of mitigation technologies and its cost from another sectors.
- In the case of forestry, there are no "conservation function" introduced yet on the model. The implication
 of this policy is although the land is already reforested/afforested, those land still able to be converted
 into another land function.
- For the land \rightarrow only mineral land is treated yet.

Economic Impact

GDP and GDP Loss 2015-2030 (Trillion IDR)

	BAU_1	DDP	P_1	DDPP	_2	IND	C_1	INDC	2_2
Year	GDP	GDP	GDP gain/loss	GDP	GDP gain/loss	GDP	GDP gain/loss	GDP	GDP gain/lo ss
2015	8941.0	8928.4	-0.14%	8929.4	-0.13%	8928.4	-0.14%	8929.4	-0.13%
2020	12887.3	12955.6	0.53%	12848.8	-0.30%	12849.2	-0.30%	12853.6	-0.26%
2025	18192.2	18618.5	2.34%	18320.9	0.71%	17868.9	-1.78%	17872.2	-1.76%
2030	26649.75	26748.09	0.37%	27005.09	1.33%	26062.91	-2.20%	26067.47	-2.18%

Some macroeconomic indicator in 2030 (Trillion IDR)

Under INDC, other indicator are reduced, except the C_G due to income from the tax

(Carbon Price (USD/tCO2eq)							
	Carbon	INDC-1	INDC-2					
	Price							
	2010	0.000	0.000					
	2015	0.000	0.000					
	2020	0.005	0.007					
	2025	0.702	0.700					
	2030	1.507	1.505					

This result might be "too-optimist"

- The FOLU scenario is highest one (DDPP).
- Haven't introduce the very detail of mitigation technology in each sector

Total Area (ha)

Under all scenarios, we predict that the area for paddy, palm oil, and timber will keep increasing. Mitigation policy will only reduce its growth rate. 9

Scenario	2015	2020	2025	2030
BAU	86729237.5	84836360.2	81973994.5	77815013.4
DDPP1	86876035.2	85481768.7	83635604.9	81267300.8
DDPP2	87596101.8	86925057.0	85805733.8	<mark>84167896.8</mark>
INDC1	86876035.2	85481769.0	83635605.7	81267301.7
INDC2	87596101.8	86925057.2	85805646.8	<mark>84165670.7</mark>

Although we didn't introduce the conservation function, however, we found that the reforestation still the best way if the government want to maintain the forest area.

However, we found, at least in 2030, if the conservation not introduced. The reforestation policy (DDPP2) will still cause a high GHG emission because the are still a high probability of land conversion.

Under the INDC (IND1 and INDC2) the emissions are set to 29% reduction from BAU level in 2030.

10

Conclusion

- The INDC might causing around 2% of GDP loss in 2030. However it should be noted that the land productivity improvement is under the DDPP scheme. Moreover, the reforestation can help to maintain the forest area.
- The mitigation action in Indonesia will not effective if the policy is done partially. At least, the FOLU sector should increase the crops yield and lower the deforestation rate.
- As long as the economy still highly rely on land based sector, the land conversion, especially in the mineral land, will keep remaining although the mitigation already introduced
- We predict the land-use change will keep increasing as long as this sector is promising for the economy. Indonesia needs another promising alternative beside from the land-based sectors. However, we also admit that the result might be over-estimated due to the lack of introduction of mitigation cost and details of mitigation technology from other sectors.

Thank You