Low Carbon Society Seminar

Organized by TGO, IGES, NIES, JGSEE-KMUTT and SIIT-TU 17-19 November, 2010 Pullman King Power Hotel, Bangkok

Sustainable Transport for Low Carbon Society in Nepal: Institutional and Other Challenges

Ram M. Shrestha Adjunct Professor Asian Institute of Technology Thailand

Contents

- Key areas of intervention for low carbon transport development
- Institutional implications
- The case of electrified low carbon transport development in a developing country - Nepal

Key factors behind carbon emission from transport sector

- CO2 emission from Transport = ∑EF*FI*MS*TD where
 - EF = Emission factor
 - FI = Fuel Intensity
 - MS = Modal Structure
 - TD= Transport Demand

Low carbon transport requires...

- Lower EF: Less carbon intensive fuels
- Lower FI: Low carbon and more energy efficient transport technologies and infrastructure (e.g., better road quality)
 => Renewable energy based and energy efficient transport options
- More efficient MS: Larger share of mass/public transport and non-motorized transport

=> Investment in long term capital intensive infrastructure

- Reduction in TD:
- ⇒ Transport demand management policies; road/congestion pricing
- \Rightarrow TD = f(GDP, Pop, Prices, regulatory conditions)

Low carbon & energy efficient transport technologies and infrastructure

- Institutional capacity and commitment:
 - To formulate and implement vehicle fuel efficiency standard (lacking in most developing countries)
 - To promote production/supply of low carbon fuels

 (often constrained by supply infrastructure (natural gas, battery recharging stations) and limitation of domestic production (biofuels))
 - To design tax and subsidy policies to discourage ownership and use of carbon and energy intensive vehicles and encourage use of low carbon energy efficient technologies
 - To raise awareness about low carbon transport technologies (LCTT)
 - To maintain the quality of existing transport infrastructure (relation between poorly designed/ maintained roads and fuel economy of vehicles)
 - LCS a much bigger issue than modal shift and vehicular fuel efficiency
 - Poor capacity of transport sector institutions in many DCs for maintenance.

Development of transport infrastructure for low carbon modal shift (1)

- Need for a dedicated institution with adequate authority and resources (funding and human)
- Existing transport planning, policies and institutions mainly road oriented; institutions for railways and mass transport much weaker, under funded!
- Integrating transport planning with both urban/land use planning and energy planning and policy.

=> Electrified transport and low carbon electricity supply

- Multi-sectoral coordination-- an institutional challenge

Development of transport infrastructure for low carbon modal shift (2)

- From economic perspective, mass transport system (e.g., railways) can be a cheaper option over a long run; still could face the financing barrier.
 - => Issue of huge upfront investment and management

- Government capacity limited

=> Rigid government control and interference in publicowned infrastructure

- Uncertainty in pricing (regulated) and profitability to private investors

• Need to identify appropriate model for financing/building, ownership and operation

 \Rightarrow Public Private Partnership?

- Public investment and private management?

Institutional capacity and carbon finance benefits

- Weak institutional capacity to benefit from international carbon finance mechanisms eg. CDM.
- Not many CDM transport projects (high CDM transaction costs partly responsible)

Transport Demand Management

- TD = f(GDP, Pop, prices, regulations)
- Demand reduction -- a big challenge when both GDP and population growing.
- TD can offset carbon reduction due to efficiency improvement and modal shift
- Efficiency improvement => rebound effect
- Institutional capacity to formulate and implement TD management/reduction; achieve behavioral change
- Need to integrate IT, urban and transport planning to reduce TD.
- Low carbon transport development a multisectoral activity
- Fuel pricing, congestion pricing, vehicle pricing /quota policy, other TD management and control policies (Singapore example).
- Al these need strong institutional capacity.

Transport system electrification and hydropower development as a low carbon strategy:

Financial and institutional implications

Case of Nepal

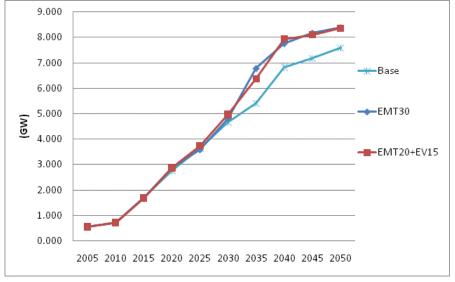
Ram M. Shrestha and Shree Raj Shakya

Overview of energy and transport sectors in Nepal

- Transport mainly road based, negligible share of railways.
- Large area of the country lack road access.
- Over 90% of national export revenue spent on energy import
- Hydropower potential of 83,000 MW; only less than 1% currently harnessed
- Nepal Transport Policy (2001/02), emphasized the promotion of electricity based transport system throughout the country with private sector participation.
- Recently, the GoN has come up with the long term plan to introduce electric railway system in Nepal (RITES/SILT, 2010).
- Five year plans (8th, 9th and 10th) emphasized on the expansion of the government owned electric trolley bus service operating inside the Kathmandu valley . However, no such expansion has materialized and the trolley bus service became dysfunctional by 2004.
- On the other hand, electric 3-wheelers (operated by the private sector) is still in operation inside the Kathmandu valley.
- Huge shortage in electricity supply at present

Transport Electrification Scenarios

Road freight and passenger transport demand under base case during 2005-2050


Sub-region	Transport Type	2005	2010	2015	2020	2030	2050	Ratio 2050/2005
Kathmandu valley	Land Freight (billion ton-km)	0.3	0.5	0.6	0.8	1.2	2.0	6.0
	Land Passenger (billion passenger-km)	4.1	5.8	8.1	10.9	17.8	34.8	8.4
Nepal	Land Freight (billion ton-km)	2.2	3.0	4.2	5.7	9.7	19.1	8.6
	Land Passenger (billion passenger-km)	20.8	30.0	44.4	63.0	112.0	231.7	11.1

Share of transport demand served by Electric Mass Transport System (Electric Train/MRT), %

		2015	2020	2025	2030	2035	2040	2045	2050
EMT30	EMT		10.0	13.3	16.7	20.0	23.3	26.7	30.0
	EMT		10.0	11.7	13.3	15.0	16.7	18.3	20.0
EMT20+EV15	EV	10.0	10.7	11.4	12.1	12.9	13.6	14.3	15.0

Implications of transport electrification for hydropower development

Annual hydropower generation capacity requirement during 2005-2050.

Scenario	20	020	20	30	2050		Cumulative Total (2005-2050)
	GW	TWh	GW	TWh	GW	TWh	TWh
Base case	2.76	13.87	4.66	24.04	7.592	35.72	885.33
EMT30	2.88	14.19	4.82	24.85	8.391	39.95	983.11
EMT20+EV15	2.87	14.50	4.98	25.86	8.364	39.15	970.03

• Additional hydropower generation capacity required: 799 MW under EMT30 and 772 MW under EMT20+EV15 by 2050.

Investment implications of transport electrification

Undiscounted Hydropower Investment Cost (million 2005 US\$)

Case	Annual Investment Cost								Cumulative Additional Investment	
	2020	2025	2030	2035	2040	2045	2050	2005-2030	2005-2050	
Base	5,899	11,462	23,288	45,076	105,863	224,829	625,728			
EMT30	6,032	11,509	24,043	56,075	115,007	254,178	682,630	2,780	394,378	
EMT20 +EV15	6,150	11,870	24,595	53,596	120,551	249,559	682,195	6,540	390,665	

Undiscounted Electric Mass Transport Investment Cost (million 2005 US\$)

Case			Cumulative Additional Investment						
	2020	2025	2030	2035	2040	2045	2050	2005-2030	2005-2050
EMT20									
+EV15	9.2	14.6	22.7	30.7	41.3	53.6	67.2	175	1,028
EMT30	9.2	16.7	27.2	41.0	57.8	77.9	100.8	197	1,401

• Who bear Investment? Public or Private

• Is Foreign Direct Investment possible?

• Policies to attract Private investment – attractive price for PPA, guaranteed market, investment incentives

Implications of transport electrification (Fossil Fuel Saving)

Undiscounted Fuel (Gasoline, Diesel, LPG) Cost in the transport sector (million 2005 US\$)

Case	Annual Fuel Cost								Cumulative Decrease in Fuel Cost	
	2020	2025	2030	2035	2040	2045	2050	2005-2030	2005-2050	
Base	1,140	1,652	2,281	2,987	3,818	4,728	5,728			
EMT30	1,026	1,433	1,906	2,406	2,960	3,523	4,137	2,634	20,770	
EMT20 +EV15	984	1,380	1,842	2,353	2,885	3,467	4,142	3,368	22,570	

Decrease in the spending for imported fossil fuels by 20.2% under EMT30 and 21.9% under EMT20+EV15.
Reduction in Economic Vulnerability

Energy implications of transport electrification (TPES and TFEC)

Cumulative TPES during 2005-2050 in different scenarios (Mtoe)

Scenario	Petroleum Products	Hydro	Total
Base Case	102.3	74.8	562.0
EMT30	90.0	83.0	548.9
EMT20+EV15	89.5	81.9	545.6

- Reduction in cumulative petroleum product requirement: 12% in EMT30 and 12.5% in EMT20+EV15.
- Increase in cumulative supply of hydropower: 11% in EMT30 and 9.6% in EMT20+EV15.
- Decrease in cumulative TPES during 2005-2050: 2.32% in EMT30 and 2.92% in EMT20+EV15.

Annual final energy consumption in the transport sector (Mtoe).

Scenario	2020	2030	2040	2050
Base Case	1.04	1.83	2.76	3.75
EMT30	0.99	1.67	2.42	3.15
EMT20+EV15	0.98	1.66	2.42	3.19

• Decrease trend of annual final energy consumption in the transport sector up to 15.9% under EMT30 and up to 15% under EMT20+EV15.

• Energy efficiency improvement.

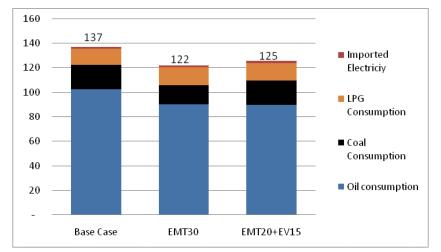
GHG and local pollutant emission implications of transport electrification

GHG emission from transport sector under different scenarios (10⁶ tons).

Scenario	2020	2030	2050	Cumulative Total (2005 – 2030)	Cumulative Total (2005 - 2050)
Base case	3.26	5.70	11.46	74.11	244.37
EMT30	3.01	4.95	8.68	68.71	205.76
EMT20+EV15	2.91	4.81	8.69	66.96	201.95

•Decrease in cumulative GHG emission from transport sector:

7.3% under EMT30 and **9.6% under EMT20+EV15** during 2005-2030.


15.8% under EMT30 and **17.4% under EMT20+EV15** during 2005-2050.

Cumulative environmental pollutants emission from Transport Sector during 2005-2050 in different scenarios (10⁶ tons).

Scenario	СО	NO _X	SO ₂	NMVOC
Base case	14.22	1.57	0.56	1.14
EMT30	9.64	1.28	0.50	0.91
EMT20+EV15	10.08	1.41	0.55	0.95

Implications of transport electrification (Energy Security)

Cumulative energy import energy during 2005-2050 (Mtoe)

- Decrease in cumulative total imported energy: 11.1% in EMT30 and 8.5% in EMT20+EV15
- Enhanced energy security due to low carbon transport development

Shannon-Weiner Index for cumulative TPES

Case	Base Case	EMT30	EMT20 +EV15
Shannon-Wiener			
Index	1.128	1.130	1.150

• No significant effect on the energy supply diversity

Institutional coordination: a major challenge

- Institutions to be involved:
 - Ministry of Energy
 - Ministry of Water Resources
 - Ministry of Transport (Railway Dept?)
 - Ministry of Finance
 - Ministry of Environment
 - Nepal Electricity Authority
 - Private investors (domestic and foreign)
 - Financial institutions
 - Local governments
 - Hydropower development and transport electrification need to be integrated

Nontrivial institutional coordination problem!

Status of Railway Transport in Nepal: An Overview

The country has the total physical railway line of **57 km**.

-Nepal Railways Company (NRC), a government agency owns the **53**-**kilometer narrow-gauge rail line**, which is composed of two sections:

i)A **32-kilometer section** between Jaynagar in India to Janakpur in Nepal (Passenger traffic)

ii) A **21-kilometer portion** from Janakpur to Bijalpura (not in operation at present).

- Negligence of non-road transport options; dominance of the road option.

Story of electric ropeway and trolley bus in Nepal : Institutional problems

- Ropeway: Lack of policy commitment at the implementation level is a major barrier. As a result, the public sector Hetauda Ropeway was closed in the later half of 1990's.
- However, the success of privately operated Manakamana Ropeway in central Nepal is a ray of hope for the future.
- Trolley bus: in 2001 the Trolley Bus Service between Bhaktapur and Kathmandu providing services to over 3.6 million people in a year (CEN 2001) came to a halt. The reasons behind:
 - lack of political commitment on the government policy,
 - mismanagement and
 - political high handling of Trolley Bus Management System.

Financing and Regulatory Challenges

- Huge shortage of electricity at present
- Uncertainty in purchase of IPP power; power pricing
- Financial guarantee?
- Weak regulatory framework and inefficient retail pricing
- Massive institutional and regulatory reforms needed for a low carbon transport development
- Capacity to benefit from international carbon finance lacking

Final remarks

- Institutional capacity to deal with low carbon society financing and management – a major constraint
- Innovative approaches and good practices need to be up-scaled (example: congestion pricing and funding for road maintenance in London)
- Often low carbon options are financially no regret options; upfront investment and institutional capacity for effective operation and management of the facilities- a bigger challenge in developing countries
- The "hydropower only" policy of the country can deprive it carbon benefits from low carbon electrified mass transport development.

Reference

- National Environmental and Scientific Services (NESS), 2003. Analysis of HMG Policies and Regulations affecting Electric Vehicles, Final report. Kathmandu
- Sadeghi, M., Hosseini, H. M., 2008. Integrated energy planning for transportation sector—A case study for Iran with techno-economic approach. Energy Policy 36 , 850-66.
- Ministry of Energy (MOE), 2010. Twenty-Year Hydropower Development Plan 2010-2030, Twenty-Year Hydropower Development Plan Implementation Task Force, GoN, Kathmandu
- Ministry of Water Resource (MOWR), 2009.Ten-Year Hydropower Development Plan 2010-2020, Part 1: Main Report, Ten-Year Hydropower Development Plan Implementation Task Force, GoN, Kathmandu.
- Gyawali, D., Dixit, A., Dixit and M. Upadhya, M., 2004.Ropeways in Nepal. Nepal Water Conservation Foundation (NWCS), Kathmandu.

Thank you