Low-Carbon Society Vision 2030 Thailand

Bundit Limmeechokchai

Sirindhorn International Institute of Technology Thammasat University

November 17, 2010 Bangkok, Thailand

ASIA-PACIFIC INTEGRATED MODEL (AIM)

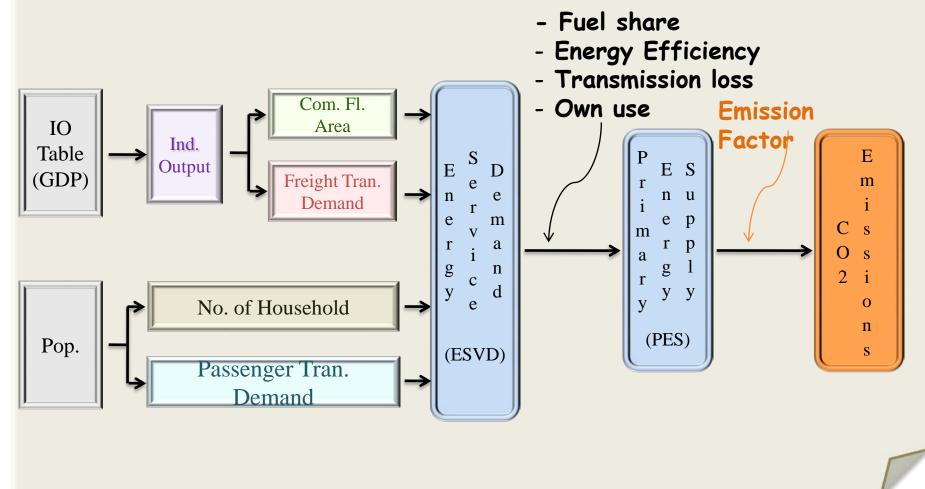
Bottom-up approach

AIM/ExSS Model

- □ This tool can assess energy balance and CO₂ emissions among sectors simultaneously.
- This is a snapshot tool at a certain point (but not optimization model).

AIM/Enduse Model

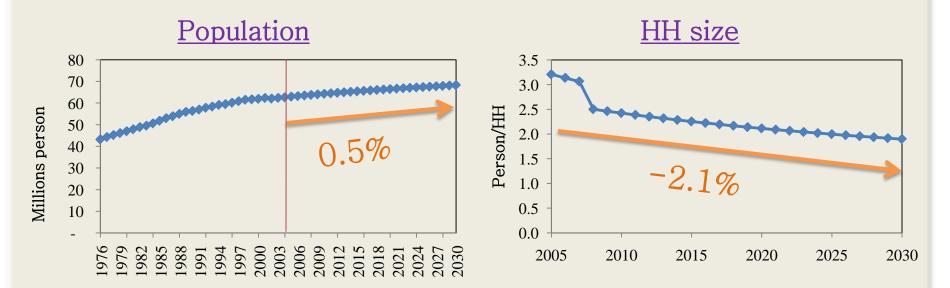
- □ This model can assess individual technologies under the detail technology selection framework.
- □ This model is partial equilibrium model on energy.

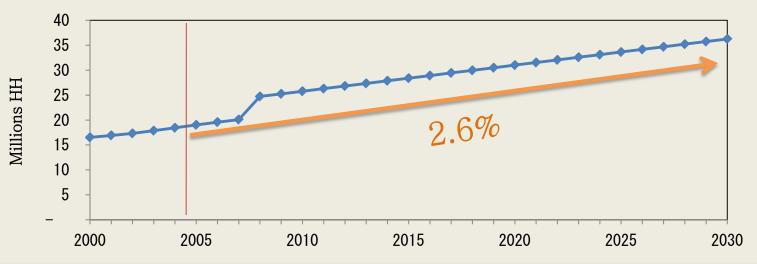

Top-down approach

AIM/CGE Model

- This model draws the balanced macro economy, based on social condition such as population, technology and preference, and countermeasure.
- □ This model is a general equilibrium model.

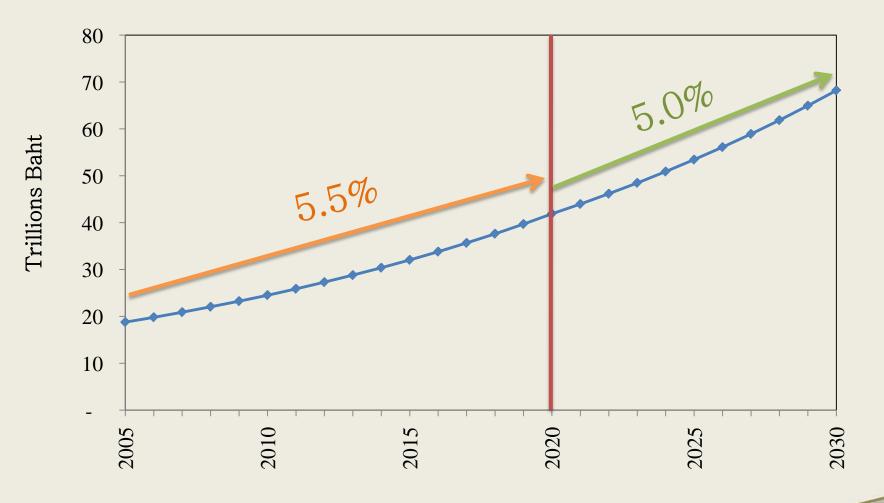
EXSS BASIC CONCEPT


Tool for socio-economic indicators and environmental load emissions

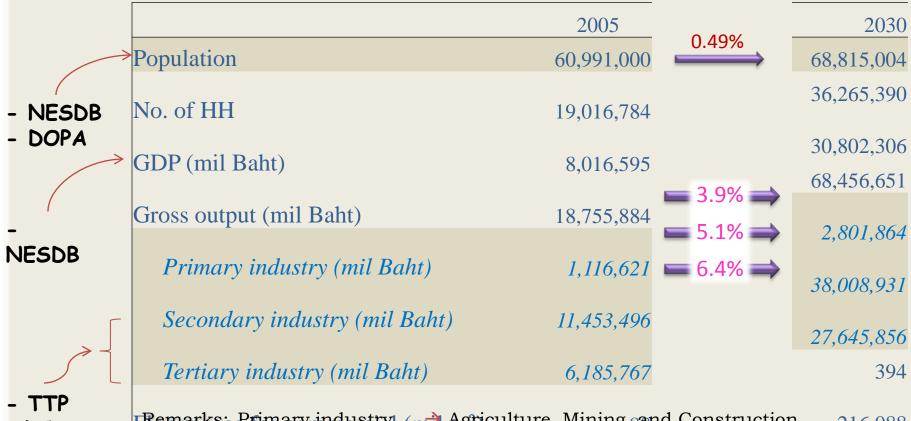

INTRODUCTION

- □ LCS is a concept referring to an economy which has a minimal output of GHG emissions into biosphere.
- □ To propose for avoid catastrophic climate change, and precursor to zero carbon society and renewable-energy economy.
- □ To discuss the possibility of developing a Thailand's low-carbon society.
- □ To create awareness among Thailand's authorities, government, stakeholders, and communities for urgent and decisive actions to be taken to realize a robust growth and low-carbon Thailand.

QUANTITATIVE ASSUMPTIONS



No. of HH



QUANTITATIVE ASSUMPTIONS

Gross Domestic Product (GDP)

ESTIMATED SOCIO-ECONOMIC INDICATORS

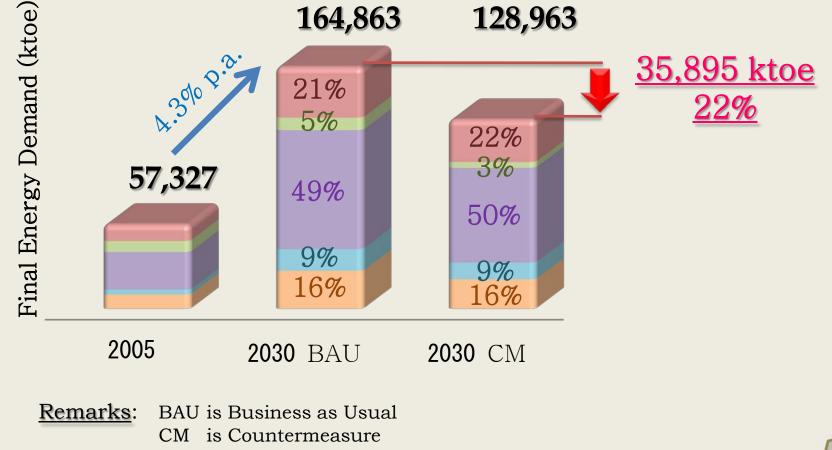
- DCA - DLT

 Image: Primary industry (min Agriculture, Mining, and Construction 216,088 Secondary industry → Textiles, Food & beverage, Chemical, Metallic,
 216,088

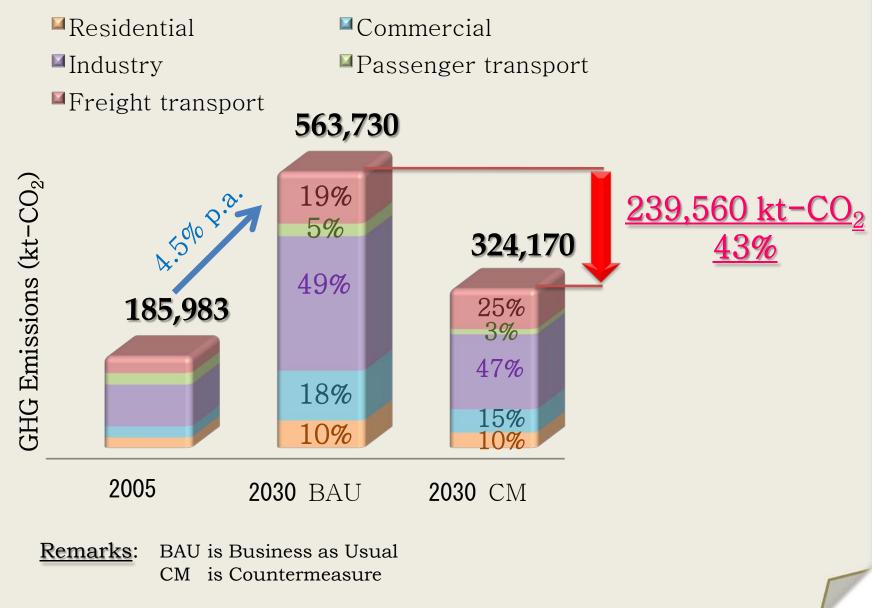
 Passenger transport demand (mibp=kietallic, and Others
 589,859

 Freight traffertiary industry mil + Service sector 188,524
 589,859

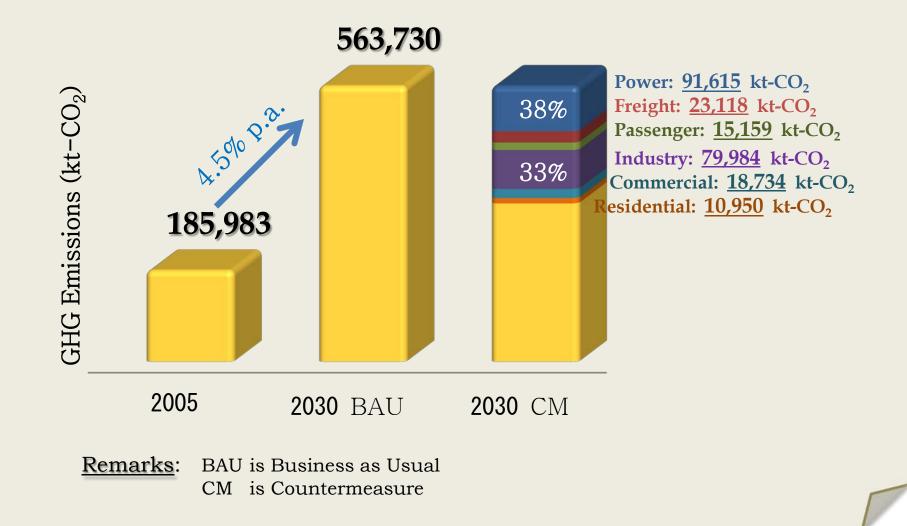
• ENERGY DEMAND IN 2030 BAU


• ENERGY DEMAND IN 2030 CM

ONLY COST-EFFECTIVE ENERGY SAVINGS AND CO₂ MITIGATION OPTIONS.


CO₂ MITIGATION MEASURES IN 2030CM MUST BE COMPLIED WITH NATIONAL CONSTRAINTS.

ENERGY DEMAND


Residential	^{II} Commercial
⊠Industry	[™] Passenger transport
^{III} Freight transport	

GHG EMISSIONS

GHG EMISSIONS/REDUCTIONS

POWER GENERATION

□ Efficiency improvement in the *<u>Power generation sector</u>*

• <u>*T&D loss will improve to be 5%.*</u>

- <u>Technology transfer</u>: New power plant technology will be added such as IGCC and CCGT \rightarrow Eff. Improve to be 48% and 56%.
- *Fuel switching: Increasing share of RE and NE in PDP 2010.*

Fuel type	Share in 2030 BAU	Share in 2030 CM
Natural gas	71.4	39.0
Oil	6.6	_
Coal	15.1	23.6
Hydro	4.4	20.5
Nuclear	_	11.2
Renewable energy	2.5	5.7

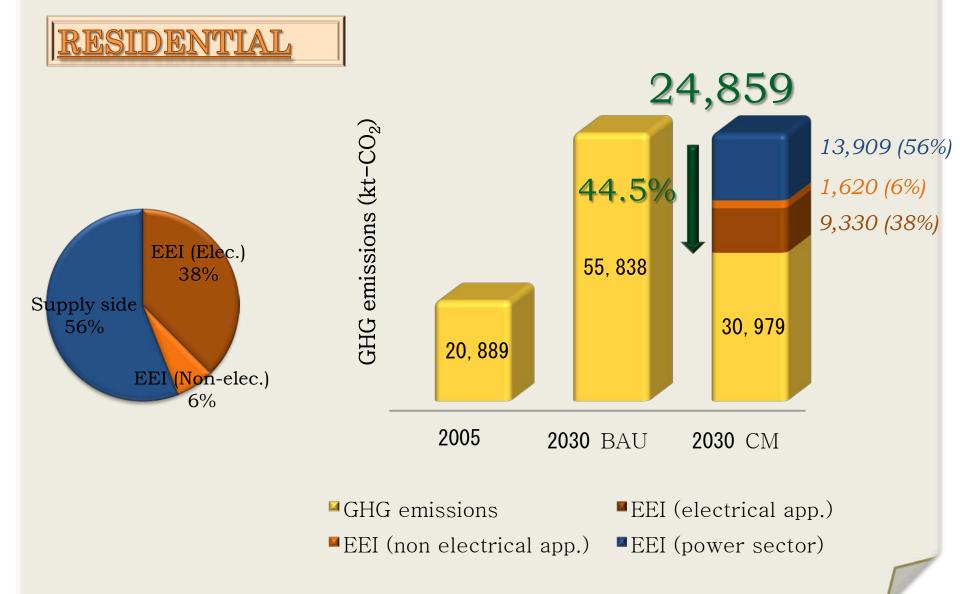
Ref: Thailand's Power Development Plan, PDP 2010.

<u>RESIDENTIAL</u>

□ Energy efficiency improvement in *Households (Electric)*

- Efficiency improvement by 30%
- Penetration rates up to 100% in 2030

Energy efficiency improvement in <u>Households (Non-electric</u>)


- Efficiency improvement
 - by 30% in wood stove
 - by 5% in LPG stove

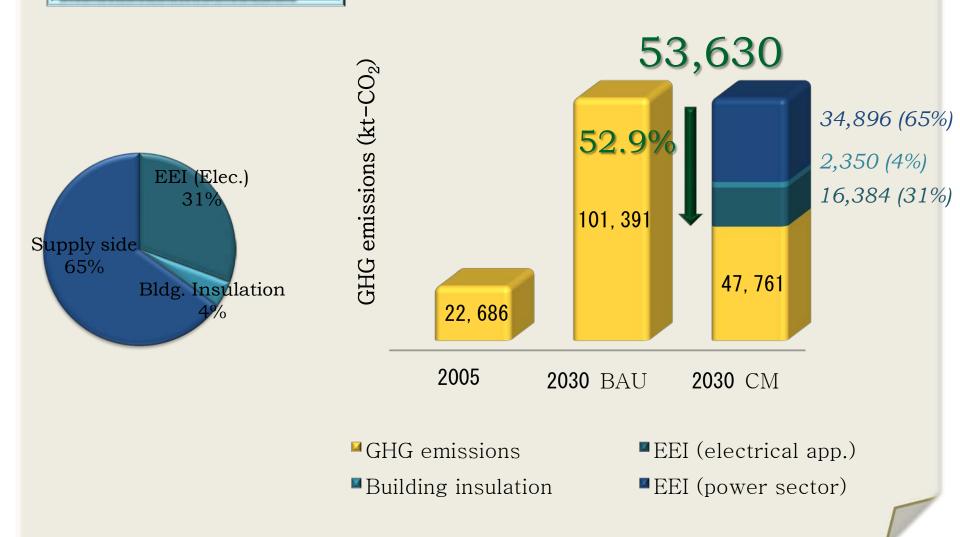
Penetration rates up to 100% in 2030

Ref: Thailand Research Fund. 2007. Research Programme on Policy Research for Promoting the Development and Utilization of Renewable Energy and the Improvement of Energy Efficiency in Thailand.

<u>COMMERCIAL</u>

□ Energy efficiency improvement in <u>Buildings</u>

- Efficiency improvement by 30%
- Penetration rates up to 100% in 2030

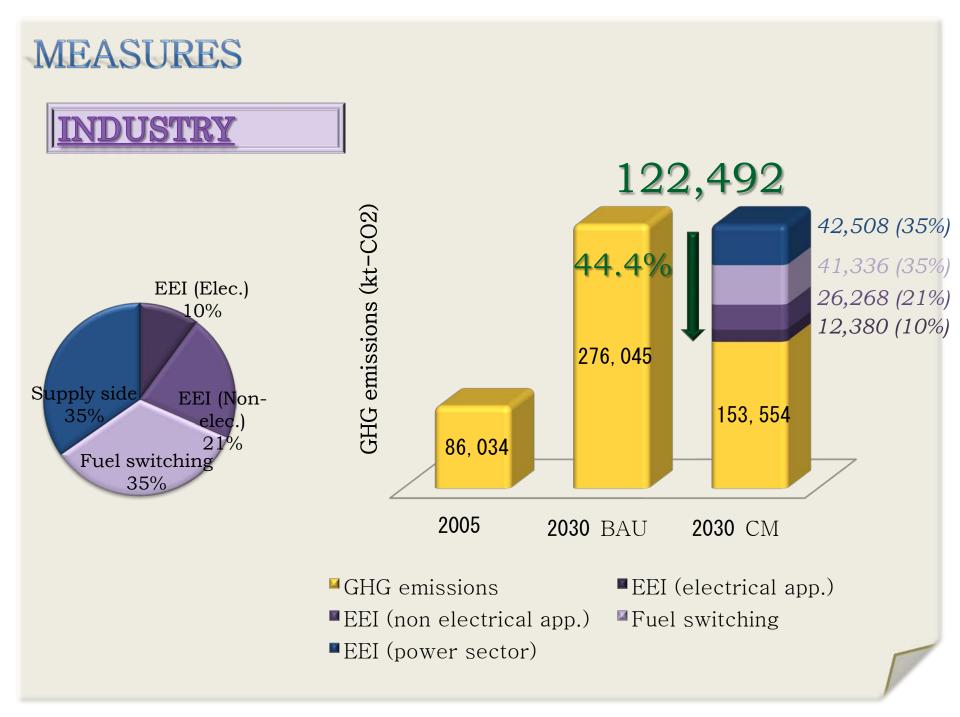

Energy efficiency improvement in <u>Buildings (Building</u>)

- Building insulation
- Building envelope
- Penetration rates up to 100% in 2030
- Ref: Thailand Research Fund. 2007. Research Programme on Policy Research for Promoting the Development and Utilization of Renewable Energy and the Improvement of Energy Efficiency in Thailand.

COMMERCIAL

INDUSTRY

□ Energy efficiency improvement in *Industry (Electric)*


Efficiency improvement

System	Motor	Others	Lighting
EEI	10%	20%	30%

• Penetration rates up to 100% in 2030

Energy efficiency improvement in <u>Industry (Non-electric)</u>

- *Efficiency improvement by 30%*
- □ Fuel switching in *Industry*
 - *Reduce the penetration level in coal and oil by 50%*
 - Replace the penetration level remaining in biomass and LPG.

MEASURES

TRANSPORTATION

□ Fuel economy improvement (FEI) in <u>*Transport sector*</u>

- Efficiency improvement by 30% in
- Penetration rates up to 100% in 2030
- □ Travel demand management (TDM) in <u>*Transport sector*</u>
- Efficiency improvement by 7.38%
- Using (eco-driving, bus priority, and non-motorized transport)

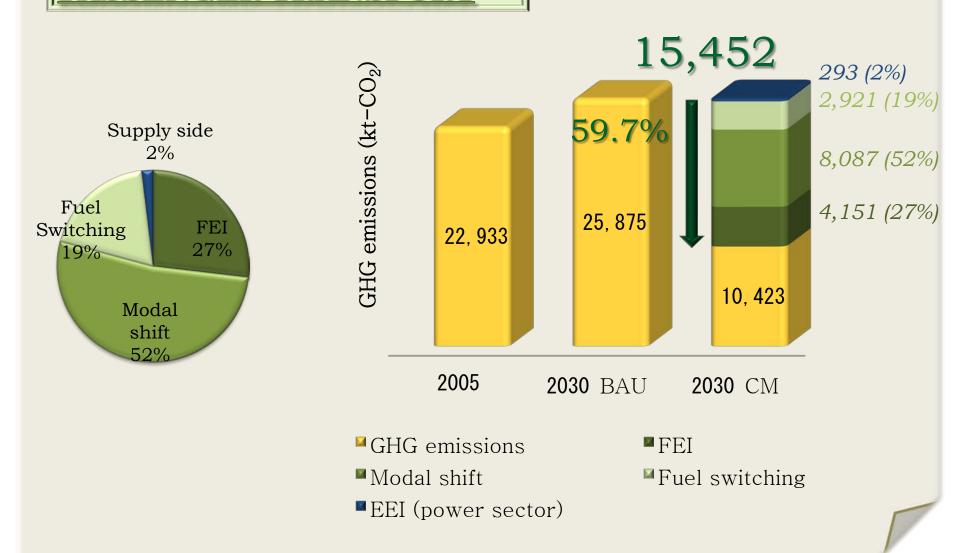
Ref: Pongthanaisawan, J. 2007. Road transport energy demand analysis and energy saving potentials in Thailand. Asian Journal of Energy and Environment Kuwattanachai, N. 2009. Hybrid and Electric cars. TRF Newsletter.

TRANSPORTATION

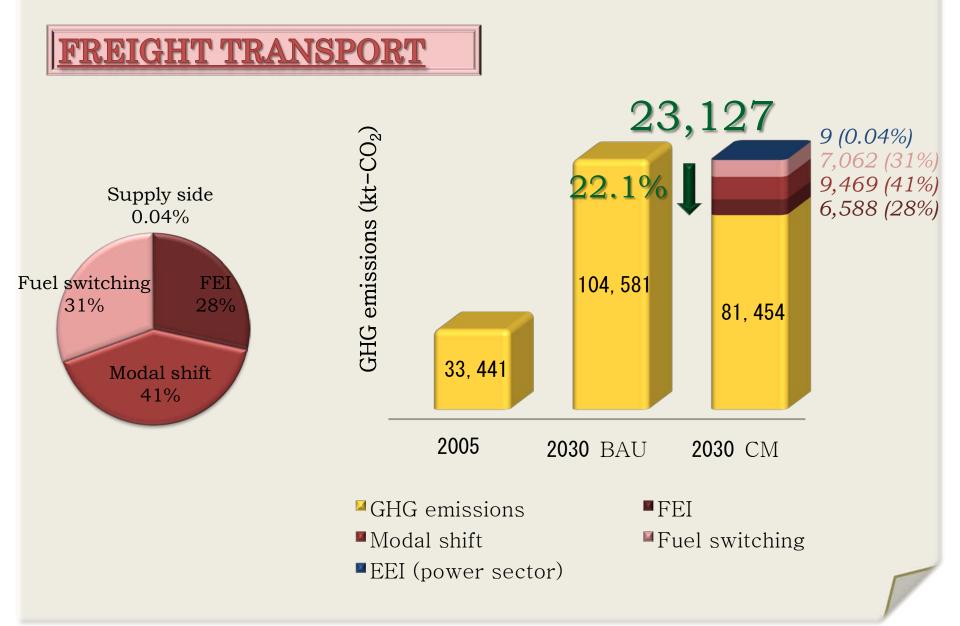
□ Fuel switching in *<u>Transport sector</u>*

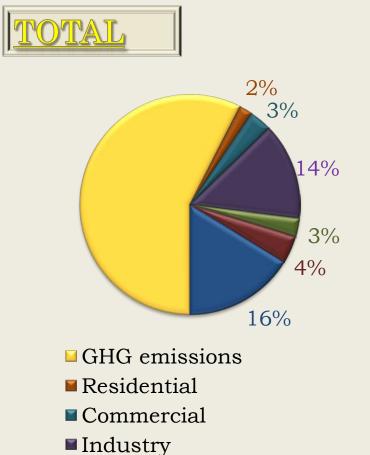
- CNG engines will increase by 20% in 2030
- Hybrid engines can save energy consumption by 30%

□ Modal shift in <u>*Transport sector*</u>

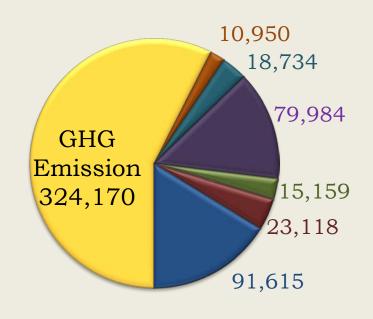

		SV	LV	Bus	Motor bike	Bike	Walk	Train	Plane	Ship
Passenger	2005	24.3	6.7	42.3	14.6	0.8	10.7	0.2	0.4	-
	2030	15.0	5.0	20.0	10.0	12.8	25.0	12.0	0.2	-
Freight	2005	2.2	80.8					2.3	0.02	14.8
	2030	2.2	58.2	_	_	_	_	24.9	0.02	14.8

Ref: Pongthanaisawan, J. 2007. Road transport energy demand analysis and energy saving potentials in Thailand. Asian Journal of Energy and Environment


Kuwattanachai, N. 2009. Hybrid and Electric cars. TRF Newsletter.


PASSENGER TRANSPORT

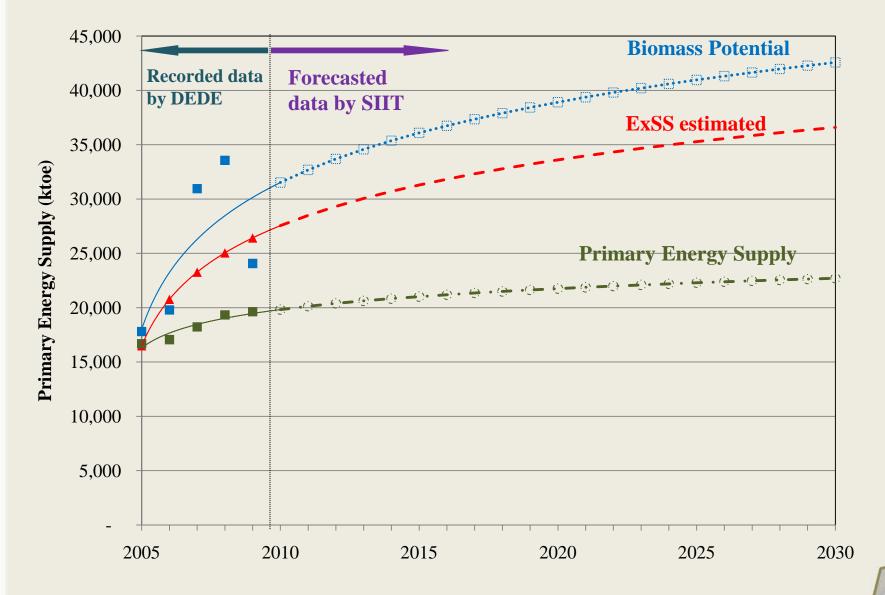
MEASURES



GHG EMISSIONS/REDUCTION

- Passenger transport
 - Freight transport
 - Power generation

GHG REDUCTION: 239,560 KT-CO₂



Unit: kt-CO₂

SUMMARY OF GHG MITIGATION MEASURES

Action	GHG Reduction (kt-CO ₂) (%)				
1. Energy efficiency improvement (EEI) in households	10,950	4.6%			
- EEI in electric devices	9,330	3.9%			
- EEI in non-electric devices	1,620	0.7%			
2. Energy efficiency improvement in buildings	16,384	6.8%			
3. Building codes	2,350	1.0%			
4. Energy efficiency improvement in industries	38,648	16.1%			
- EEI in electric devices	12,380	5.1%			
- EEI in non-electric devices	26,268	11.0%			
5. Fuel switching in industry	41,336	17.3%			
6. Fuel economy improvement in transportation	10,739	4.5%			
- Passenger transport	4,151	1.7%			
- Freight transport	6,588	2.8%			
7. Fuel switching in transportation	9,983	4.2%			
- Passenger transport	2,921	1.2%			
- Freight transport	7,062	3.0%			
8. Modal shift in transportation	17,556	7.3%			
- Passenger transport	8,087	3.3%			
- Freight transport	9,469	4.0%			
9. Efficiency improvement and fuel switching in the power sector	91,614	38.2%			
Total GHG mitigation in 2030	239,560	100.0%			
Total GHG emissions in the 2030 BAU scenario563,730 kt-CO2					
Total GHG emissions in the 2030 CM scenario324,170 kt-CO2					

RENEWABLE POTENTIALS

RENEWABLE POTENTIALS

Energy type	Potential	Ex	isting	2008-2011		2023-2030			
Electricity	MW	MW	GWh	MW	GWh	ktoe	MW	GWh	ktoe
Solar	50,000	38.6	46	55	66	6	600	720	67.2
Wind	1,600	5.13	10	115	231	13	960	1,934	106.8
Small hydro	700	67	293	165	722	43	390	1,708	102
Biomass	4,400	1,644	11,521	2,800	19,622	1,463	4,400	30,835	2,319
Biogas	190	79.6	573	60	432	27	144	1,036	64.8
Waste	400	5.6	44.8	78	624	35	192	1,536	86.4
Total	57,290	1,840	12,487.8	3,273	21,697	1,587	6,686	37,769	2,746
Thermal	ktoe	ktoe				ktoe			ktoe
Solar	154	0.5				5			45.6
Biomass	7,400	3,071				3,660			7,400
Biogas	600	201				470			600
Waste		1.09				15			42
Total	8,154	3,273				4,150			8,088
Bioenergy	ML/day	ML/day		ML/day		ktoe	ML/day		ktoe
Ethanol	3.00	1.24		3.00		805	10.8		2,936
Biodiesel	4.20	1.56		3.00		950	5.40		1,698
Total	7.20	2.80		6.00		1755	16.20		4,634
Required energy (ktoe)		66,248				70,300			112,868
Required renewable energy		4,237				7,492			15,468
RE share (%)		6.4%				10.6%			13.7%
NGV (M.cu./Day)		147		393.0		3,469	800		7,064
Alternative energy used (ktoe)						10,961			22,532
AE share (%)						16.6%			19.96%

CONCLUSIONS

- The GHG emissions in 2030 BAU scenario without mitigation measures will increase to 563,730 kt-CO₂.
- Energy saving can be decreased by 35,895 ktoe or 21.8% in 2030CM.
- ➢ By adopting measures, GHG emissions can be decreased to 324,170 kt−CO₂ or by 42.5%.
- If those policies are planned in early stage, Thailand will be able to develop not only as a premier growth center but also serve as a model for LCS.
- However, to increase more energy savings and CO₂ mitigation, leapfrogging technologies are needed under appropriate mechanism.

ACKNOWLEDGEMENTS

- Sirindhorn International Institute of Technology, Thammasat University (SIIT-TU)
- □ Asian Institute of Technology (AIT)
- National Institute for Environmental Studies (NIES), Japan
- Kyoto University, Japan
- Mizuho Information and Research Institute, Japan
- □ Asia Pacific Integrated Model (AIM)

