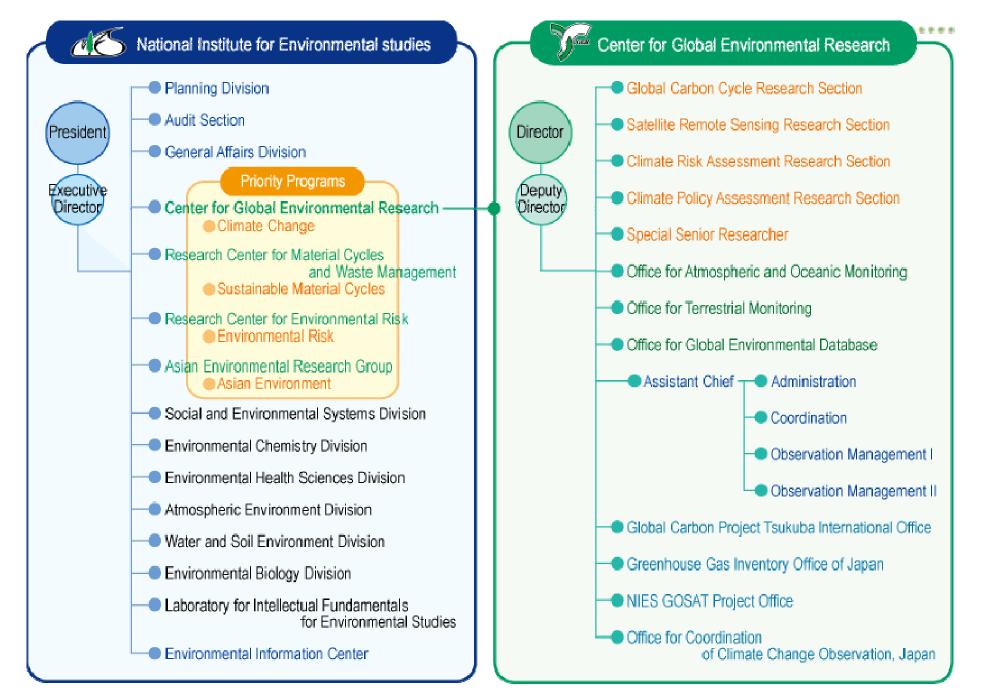


AIM (Asia-Pacific Integrated Assessment) project team National Institute for Environmental Studies (NIES), Japan

Modeling Sustainable Low-Carbon Asia


Keywords: LCS Scenario, Low-carbon City, Action plans towards LCSs

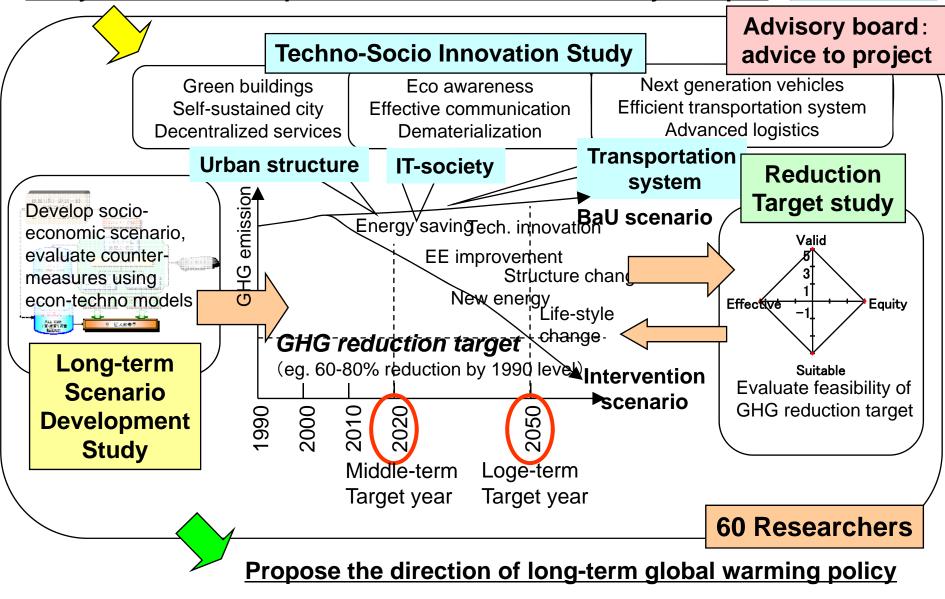
Junichi Fujino, Mikiko Kainuma (NIES)

Researchers Meeting, International Research Network for Low Carbon Societies, - LCS-RNet-

1 – 2 April 2009, New Congress Center, AREA Science Park, Trieste Italy

NIES was established in 1974 in Tsukuba, Ibaraki Japan.

http://www.nies.go.jp


LCS study in NIES, Japan

- FY1990- start AIM (Asia-Pacific Integrated Model) project
- FY1995- start AIM International Workshop
- FY2000 AIM provided SRES/A1B marker scenario
- FY2004-2008 NIES has coordinated Japan LCS research project funded by MOEJ
- FY2006-2008 Japan-UK joint LCS research project in collaboration with MOEJ, UK Defra, UKERC, Tyndall Centre for Climate Change
- FY2009-2013 NIES coordinates Asia LCS research project funded by MOEJ

1. Japan LCS scenarios study

Japan Low Carbon Society Scenarios toward 2050

Study environmental options toward low carbon society in Japan

Japan Low Carbon

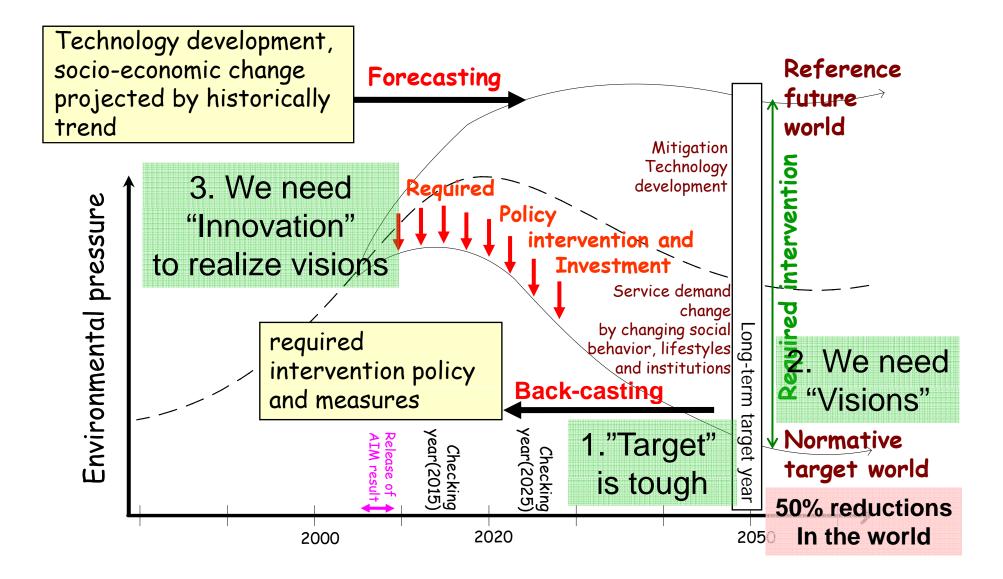
Society 2050

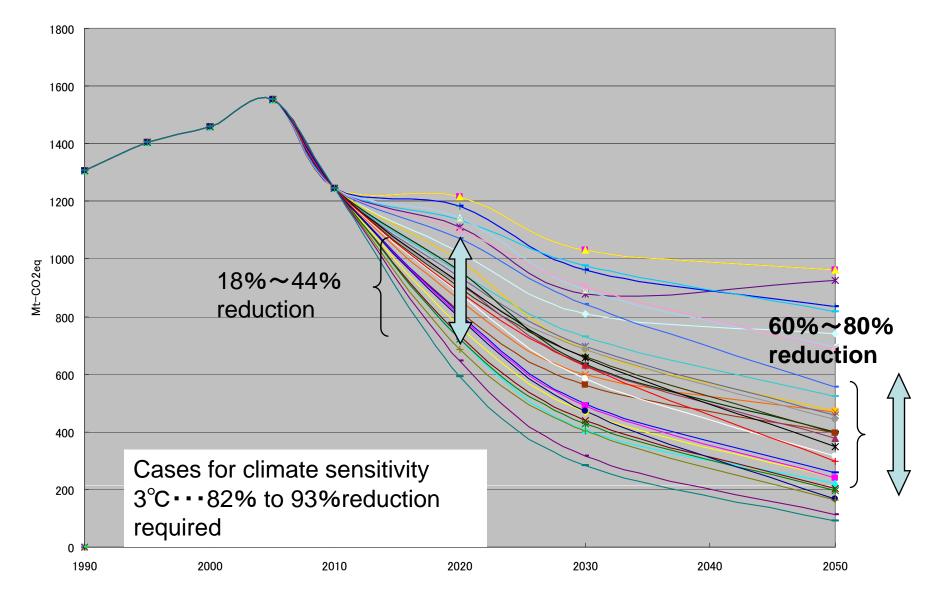
[FY2004-2008, Global Environmental Research Program, MOEJ] http://2050.nies.go.jp

NIES has coordinated this Japan LCS research project during FY2004-2008 in collaboration with around 60 researchers from Tokyo Univ, Kyoto Univ, TIT, TSU, Forest Research Institute, etc.

4S

125

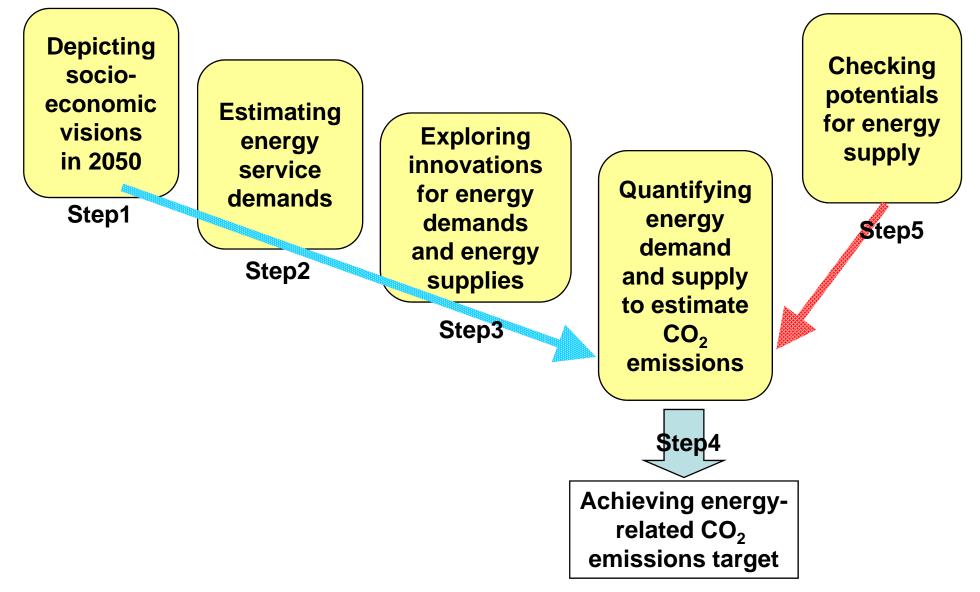

Path toward Low-Carbon Society: Japan and Asia -Results from Japan Low-Carbon Society (LCS) Scenarios Study- on February 12, 2009 in Tokyo Organized by MOEJ and NIES

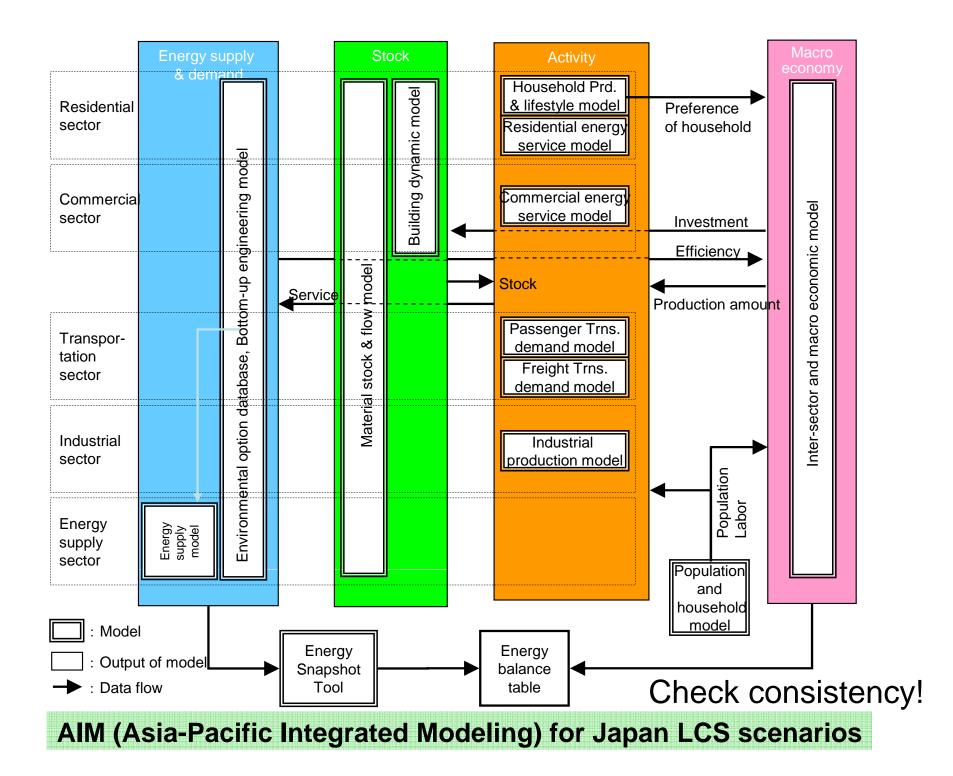


All slides are available on Japan LCS study homepage: http://2050.nies.go.jp

Japan Low Carbon Society Scenarios toward 2050

[FY2004-2008, Global Environmental Research Program, MOEJ]

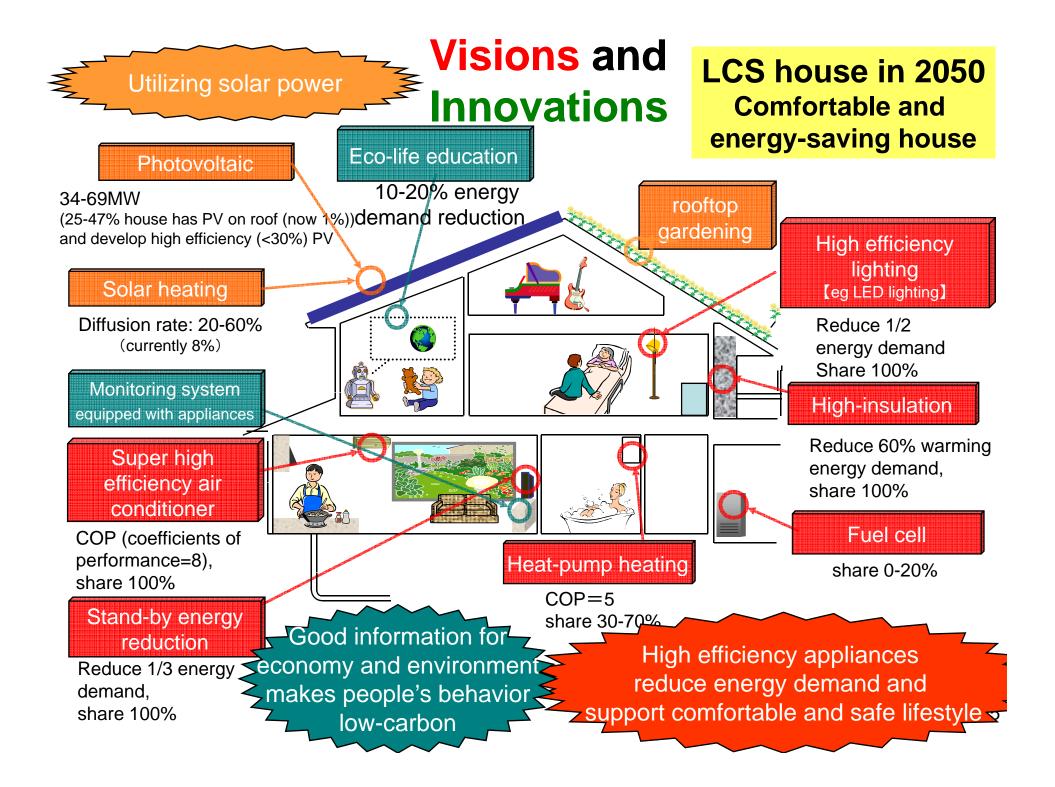


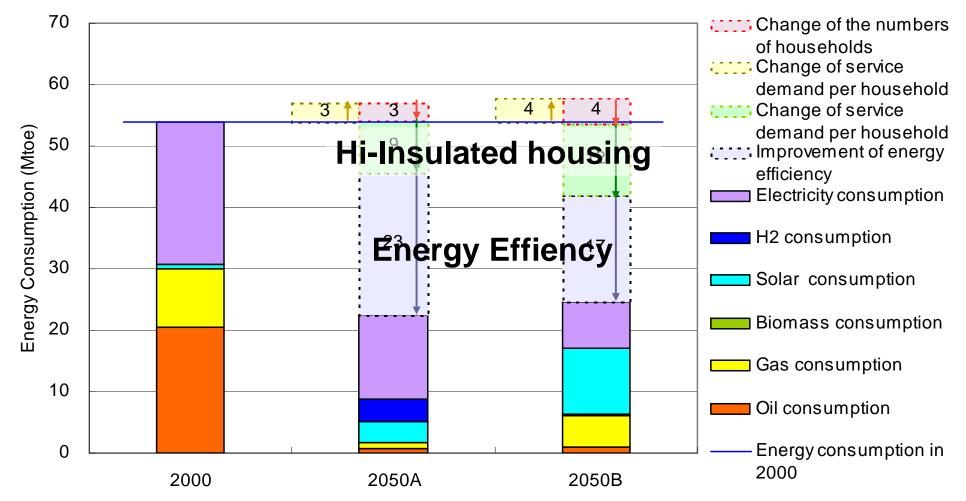


Emission reduction of Japan 2050: range of required reduction for 2°C target

Norichika Kanie, "Emission Reduction Required for the Globe and Japan in 2050", Japan Low-Carbon Society Scenarios toward 2050 Project Symposium, 12 February 2009

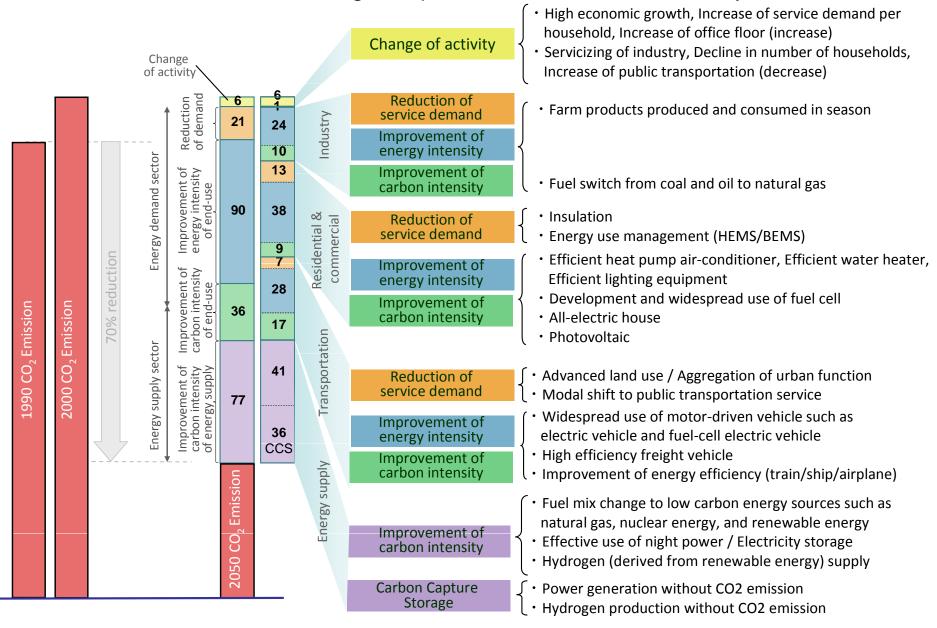
Scenario Approach to Develop Japan Low-Carbon Society (LCS)




Visions

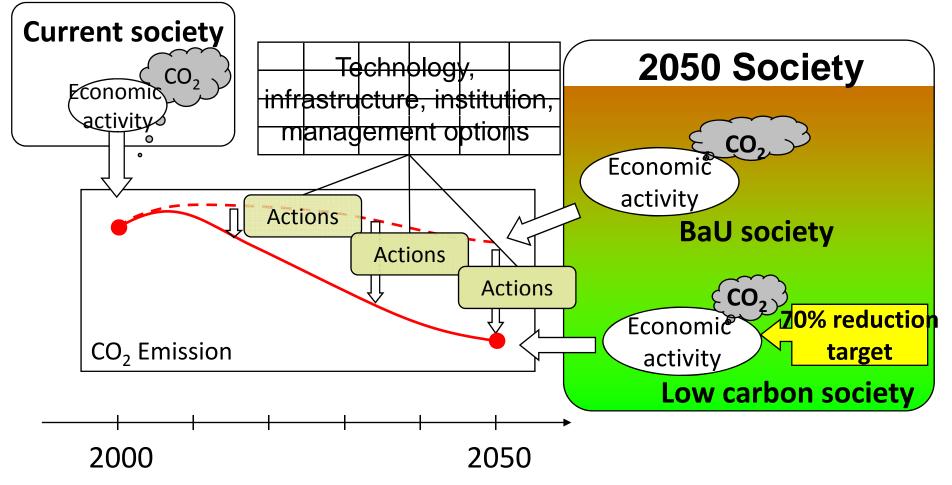
we prepared two different but likely future societies for Japan

Vision A	Vision B		
Vivid, Technology-driven	Slow, Natural-oriented		
Urban/Personal	Decentralized/Community		
Technology breakthrough Centralized production /recycle	Self-sufficient Produce locally, consume locally		
Comfortable and Convenient	Social and Cultural Values		
2%/yr GDP per capita growth	1%/yr GDP per capita growth		
	Akemi Imagawa		


Residential sector Innovations Energy reduction potential: 40-50%

Change of the number of households: the number of households decrease both in scenario A and B Change of service demand per household: convenient lifestyle increases service demand per household Change of energy demand per household: high insulated dwellings, Home Energy Management System (HEMS) Improvement of energy efficiency: air conditioner, water heater, cooking stove, lighting and standby power

GHG 70% reduction in 2050 Scenario A: Vivid Techno-driven Society Demand side energy -40% + Low carbonization of primary energy+CCS


with moderate cost of technological options as 0.3% of GDP in the year of 2050

To achieve the 70% reduction goal by 2050, we investigated

- which options should be selected,
- when options should be introduced,
- how much of each option should be introduced at each stage,

with reference of candidate options as prepared.

A Dozen Actions towards Low-Carbon Societies

Press release on May 22, 2008

Residential/commercial sector actions

1. Comfortable and Green Built Environment Efficiently use of sunlight and energy efficient built environment design. Intelligent buildings.

2. Anytime, Anywhere Appropriate Appliances Use of Top-runner and Appropriate appliances. Initial cost reduction by rent and release system resulting in improved availability.

Industrial sector actions

3. Promoting Seasonal Local Food Supply of seasonal and safe low-carbon local foods for local cuisine

4. Sustainable Building Materials Using local and renewable buildings materials and products.

5. Environmentally Enlightened Business and Industry Businesses aiming at creating and operating in low carbon market. Supplying low carbon and high value-added goods and services through energy efficient production systems.

Transportation sector actions

6. Swift and Smooth Logistics

Networking seamless logistics systems with supply chain management, using both transportation and ICT infrastructure

7. Pedestrian Friendly City Design

City design requiring short trips and pedestrian (and bicycle) friendly transport, augmented by efficient public transport

Energy supply sector actions

8. Low-Carbon Electricity Supplying low carbon electricity by large-scale renewables, nuclear power and CCS-equipped fossil (and biomass) fired plants

9. Local Renewable Resources for Local Demand Enhancing local renewables use, such as solar, wind, biomass and others.

10. Next Generation Fuels Development of carbon free hydrogen- and/or biomass-based energy supply system with required infrastructure

Cross-sector actions

11. Labeling to Encourage Smart and Rational Choices Visualizing of energy use and CO2 costs information for smart choices of low carbon goods and service by consumers, and public acknowledgement of such consumers

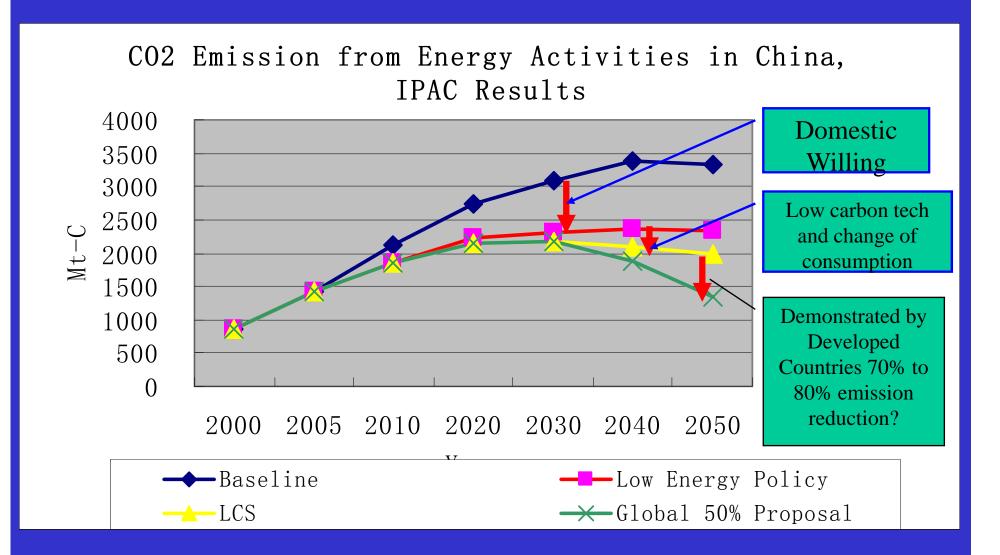
12. Low-Carbon Society Leadership Human resource development for building "Low-Carbon Society" and recognizing extraordinary contributions.

1. Comfortable and Green Built Environment

Contribution of Build	itests etc.	ommission of low carbor evelopment of low carbo	ldings with high environmental n design to architects and cons n architectural design methods etc. Sustenance of regional we	struction companies. s. Investing for technology de	evelopment
Standardization	Period	Environm	nental Efficiency Labelin	ng Introduction Period	
Barriers				d energy demand : -40% (from ergy demand : -40% (from	
Complex energy- saving performance metrics, high calculation costs, insufficient personnel	Establishment of s	simplified evaluation met	br energy-saving and CO ₂ red	cy of residences and building	JS Solar and wind utilization design
Insufficient incentives for choosing energy- saving residences	Introduction a building, rend	and expansion of resider	passing on knowledge of arch nce and building labeling syste ation upon leasing)	m for environmental efficient	cy (new Finance-friendly environmental efficiency
and buildings	based on the	environmental efficienc		-	Nurturing of worker skills & information transmission
2000	2010	2020	2030	2040	2050

Demonstration and publicity material of our LCS study on national-level and sub-national-level analysis

2. Asian LCS scenarios study


Path toward Low-Carbon Society: Japan and Asia -Results from Japan Low-Carbon Society (LCS) Scenarios Study- on February 12, 2009 in Tokyo Organized by MOEJ and NIES

2nd Session "Advancement of Low-Carbon Society Scenario Studies in Asian countries"

- China Low Carbon Society Scenarios (Dr. Jiang Kejun, Energy Research Institute, National Development & Reform Commission, China)
- 2. India Low Carbon Society Scenarios (Prof. P.R. Shukla, Indian Institute of Management, India)
- 3. Thailand Low Carbon Society Scenarios (Prof. Ram Manohar Shrestha, Asian Institute of Technology, Thailand)
- 4. Implication of terrestrial carbon emissions in a LCS (Dr. Jae Edmonds, Pacific Northwest National Laboratory, USA)
- 5. Wrap-up "Direction of Low Carbon Asia Study (Dr. Mikiko Kainuma, NIES, Japan)

Workshop "Toward Low-Carbon Society: Japan Scenarios and Asian Challenge" on February 13, 2009 in Tsukuba

All slides are available on Japan LCS study homepage: http://2050.nies.go.jp

Jiang Kejun (Energy Research Institute) *Low Carbon Sociaty Scenario up to 2050 for China* Japan Low-Carbon Society Scenarios toward, 2050 Project symposium Japan Low-Carbon Society Scenarios Toward 2050 Project Symposium, 12 February 2009 Tokyo, Japan Ram M. Shrestha and Shreekar Pradhan (AIT)

Measures to achieve low carbon society during 2005-2050

Cleaner Fuel Use and Environment Friendly Public Transport System

Use of non-motorized transport systems

- shift to non-motorized transport

Master plan for compact cities

- Lowers travel demand

Public transport friendly design of cities and transport system

- modal shift, higher use of Mass Rapid Transits

Use of clean fuel and efficient vehicles

- improving efficiency and lowering carbon intensity of energy use in transport; promoting biofuels.

Energy Efficiency Improvements (End Use and Industrial Production)

Labeling on electrical appliances

Energy auditing – promoting use of efficient technology in industries

Carbon emission labeling of industrial products

- Promoting use of low carbon products.

Low Carbon Electricity Generation

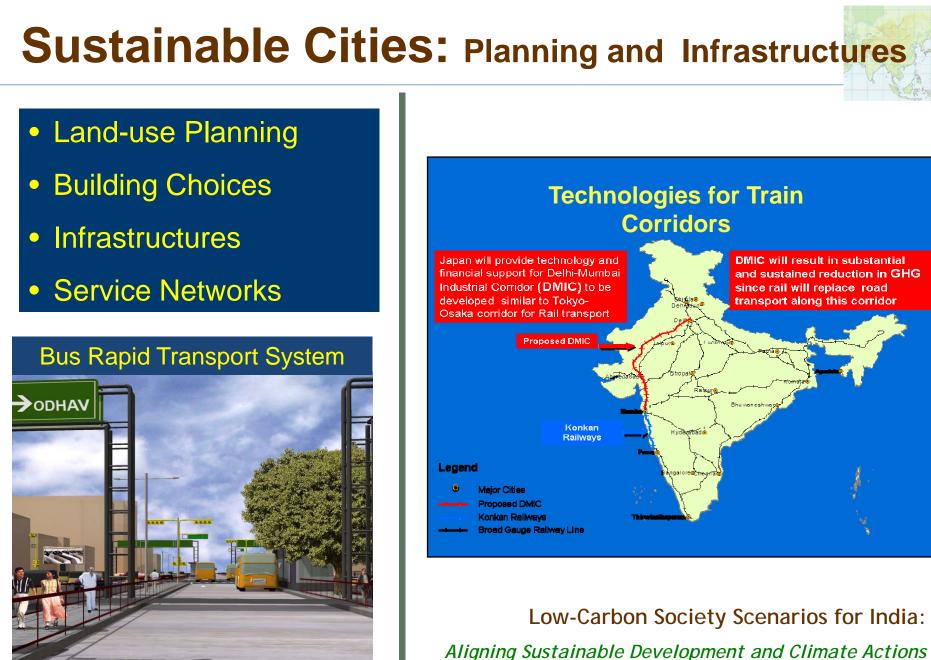
Efficient and cleaner power generation

- Promoting natural gas based advanced combined cycle power plants

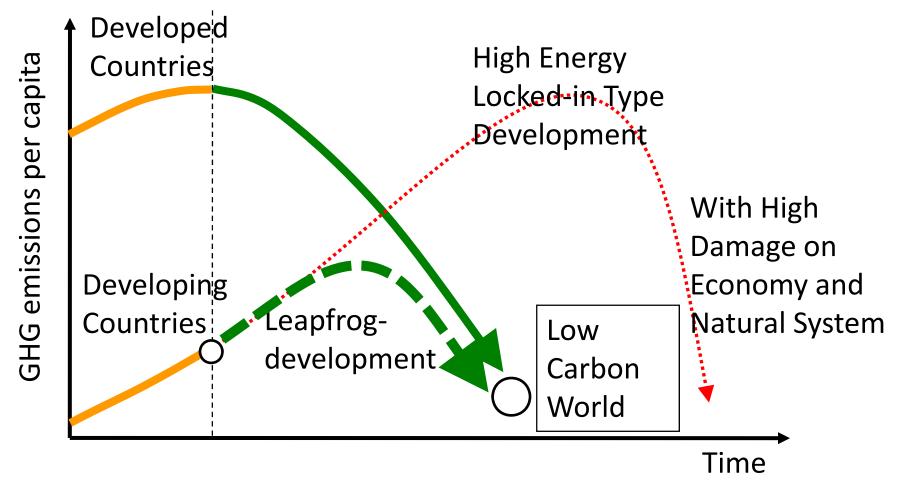
Renewable Portfolio Standard (RPS)

- Biomass based power
- Solar based power
- Nuclear power generation

Natural gas use in electricity generation

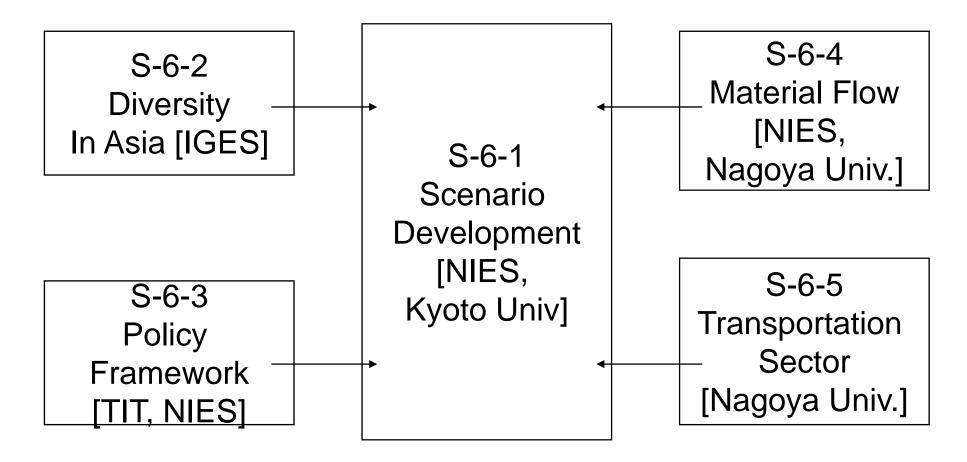

Building Insulation in Residential and Commercial Sector

- **Building codes**
- Regulatory measures to lower energy use


Financial incentives through Energy Conservation Fund

Public awareness campaign

- to promote voluntary measures



P.R. Shukla, Indian Institute of Management" Japan Low Carbon Society Scenarios toward 2050 Project Symposium" Tokyo, Japan, February 12, 2009 We have just started new research project "Asian Low-Carbon Society Scenario Development Study" (project leader: Mikiko Kainuma) during FY2009-2013, funded by Global Environmental Research Program, MOEJ

Modeling Sustainable Low-Carbon Asia

<u>Asian Low-Carbon Society Scenarios</u> <u>toward 2050 (S-6)</u>

Qualitative Analysis

Quantitative Analysis

[FY2009-2013, Global Environmental Research Program, MOE] 26

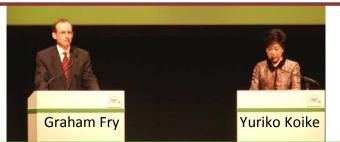
What are the Asian low carbon societies we will design in this study?

By the middle of this century (2050), the target societies will satisfy the followings;

- 1. Harmonized with drastically changing future Asian society and economy,
- 2. complying with each country's national reduction target that consists with the global low carbon target, under the global, national and regional constraints on fossil and renewal energy resources, and land resource,
- 3. developing/devising/promoting LCS policies based on each region's characteristics,
- 4. and also utilizing effectively co-benefits of LCS policies and neighboring policies.

3. Research Collaboration, Outreach...

Japan LCS research project and Japanese CC policy


- Feb 13th 2007 Interim Report "Japan Scenarios torwards Low-Carbon Society (LCS) -Feasibility study for 70% CO2 emission reduction by 2050 below 1990 level-"
- May 24th 2007 Former Prime Minister Abe launched "Cool Earth 50" to reduce 50% GHG emissions by 2050
- <u>March 2008 Japan-UK joint LCS research project released</u> <u>"Call for Action" to G20 in Chiba and G8 EMM in Kobe</u>
- <u>May 22nd 2008 Interim Report "Dozen Actions towards</u> <u>LCSs"</u>
- June 9th 2008 Former Prime Minister Fukuda set the target of Japanese CO2 emissions reduction by 60-80% in 2050
- July 29th 2008 Japanese government set "Action Plan for Achieving a Low-carbon Society"

Japan-UK Joint Research Project Sustainable Low-Carbon Societies (LCSs) (Co-chairs : Shuzo Nishioka(NIES) and Jim Skea(UKERC))

In 2006, the Governments of Japan and UK established an innovative joint research project with participation from a diverse group of some 20 countries including most G8+5 countries, Asian countries (Australia, Korea, Thailand, Nepal, Malaysia, Indonesia), African countries, and others.

Launch of the Project : 16th Feb 2006 (Anniversary of Kyoto Protocol)

Former Japanese Environment Minister Yuriko Koike and UK Ambassador to Japan Sir. Graham Fry announced the launch of the joint research of the Low-Carbon Society.

Ist Workshop: June 2006 Developing Visions for a LCS through Sustainable Development

WS: 19 countries, 54 experts Symposium: around 500 people

 A long-term perspective focusing on the need for urgent action to reduce CO₂ towards 2050.

 Achievement of LCS will involve the development and deployment of low carbon technologies, changes in lifestyles and institutions, and need to align with sustainable development.

Tokyo

1st workshop on Japan – UK Joint Research Project Developing visions for a Low Carbon Society (LCS) through sustainable development on June 2006

Participants from 19 countries; Asia: Japan, China, India, Thailand, Taiwan (China) Africa: South Africa, Nigeria Europe: UK, France, Germany, Denmark, Spain, Netherlands, Russia Latin America: Brazil, Mexico, Chile North America: US, Canada

2nd Workshop: June 2007 Achieving a Sustainable LCS

London 30 countries, 100 participants

- A wide range of stakeholders- from government, business, and civil society need to be engaged in finding solutions.
- A significant share of GHG is due to cities. Effective Action can be and is being undertaken.

3rd Workshop: Feb 2008 Roadmap to Low Carbon World

WS: 18 countries, 79 experts Symposium: 273 participants Creation of appropriate incentives for business using long-term policy signals to strengthen carbon pricing.

- Expanding financial flows, international cooperation in low-carbon approaches.
- Building trust between countries and stakeholders though enhancement of communication is important.

"Call for Action" and WS3 "Executive Summary" were delivered to G20 in Chiba, March 14-16 2008.

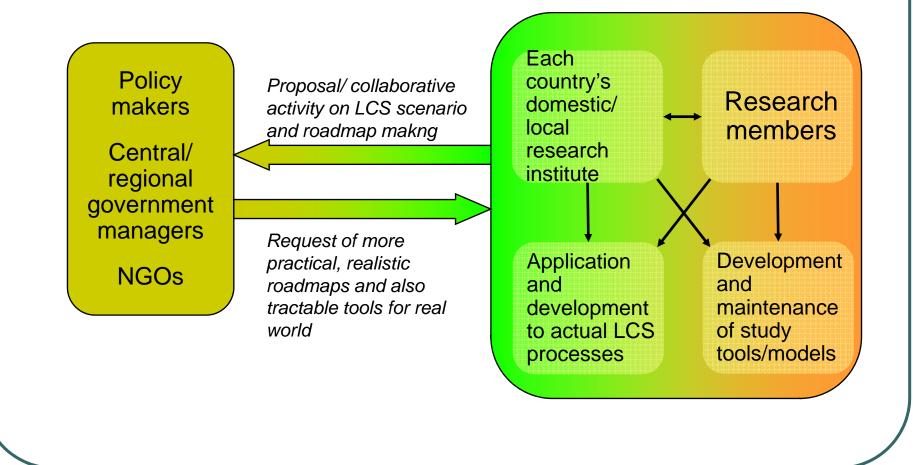
G8 Gleneagles

G8 Environmental Ministerial Meeting, May 2008 G8 Japan, July 2008

Japanese Former PM outlines green 'Fukuda vision' on 9th June 2008 pledged to cut of 60-80 per cent of greenhouse gas emissions based on current levels by 2050 in Japan.

Japanese government set "Action Plan for Achieving a Low-carbon Society" on 29th July 2008 (http://www.kantei.go.jp/foreign/policy/ondanka/080729.pdf).

Side Event at UNFCCC/COP


- COP11 (2005), "Global Challenges Toward Low-Carbon Economy -Focus on Country-Specific Scenario Analysis-"
- COP12 (2006), "Global Challenges toward Low-Carbon Society (LCS) through Sustainable Development (SD)"
- COP13 (2007), "Low-Carbon Asia: To be or not to be"
- COP14 (2008), "Sustainable Low-carbon Asia: How can it change the post-2012 climate negotiations?"
- COP15 (2009), ...



We support country-wise LCS modeling through SD for Asia-Pacific and the world - We have continued AIM Training Workshops since 1997 -

Expectations on LCS-RNet: "How to deploy our study to real world?"

Focused points in this modeling study

In this study, with models, quantification and consolidation of the following points are focused, and they are reflected in LCS roadmaps using the back-casting model.

	Issues	Challenges		
1	Accumulation and deepening processes of the next five capitals. 1) Energy infrastructure and technology, 2) Urban infrastructure, 3) Human capital, 4) Institution, 5) Social capital	How to integrated in LCS roadmaps wth engineering/ economic/ financial/ institutional rationality ?		
2	Resolution of urban and rural disparity, energy-poverty nexus.	Realization of renewable energy society, and leapfrogging to new rungs on the energy ladder		
3	Development and specialization of industrial structure, external dependency and vulnerability of the region.	Trend-breaking to new material/energy efficient, economicaly robust, and endogenously developing industrial system		
4	Deployment of urban and inter-urban traffic systems.	How to realize comfortable Asian compact cities ?		
5	Regional climate characteristics, building characteristics and lifestyle	Harmonization and merging of appropriate life and building style, e.g. Asian vernacular habitation, modern highly insulated material intensive building,		
6	Potentials of renewable energy resources, and developments of their utilizing facilities.	Integration of natural conservation, regional tradition, renewable energy deployment, and energy security		

Two stages of LCS scenario development and where to apply three model groups

Stage 1: Design of a Low Carbon Society

- 1. Creation of narrative storylines of future Low Carbon Societies
- 2. Description of sector-wise details of the future LCSs.
- 3. Quantification of the Macro-economic and social aspects of the LCSs.
- 4. Identification of effective policy measures and packaging them

<u>Stage 2: Putting them together and</u> <u>design roadmaps towards LCS</u>

- 1. Design of policy roadmaps toward the Low Carbon Society
- 2. Feasibility analysis of the roadmaps considering uncertainties involved in each policy option
- 3. Analysis of robustness of the roadmap caused by social, economical and institutional acceptability and uncertainties

Group 1: Element models;

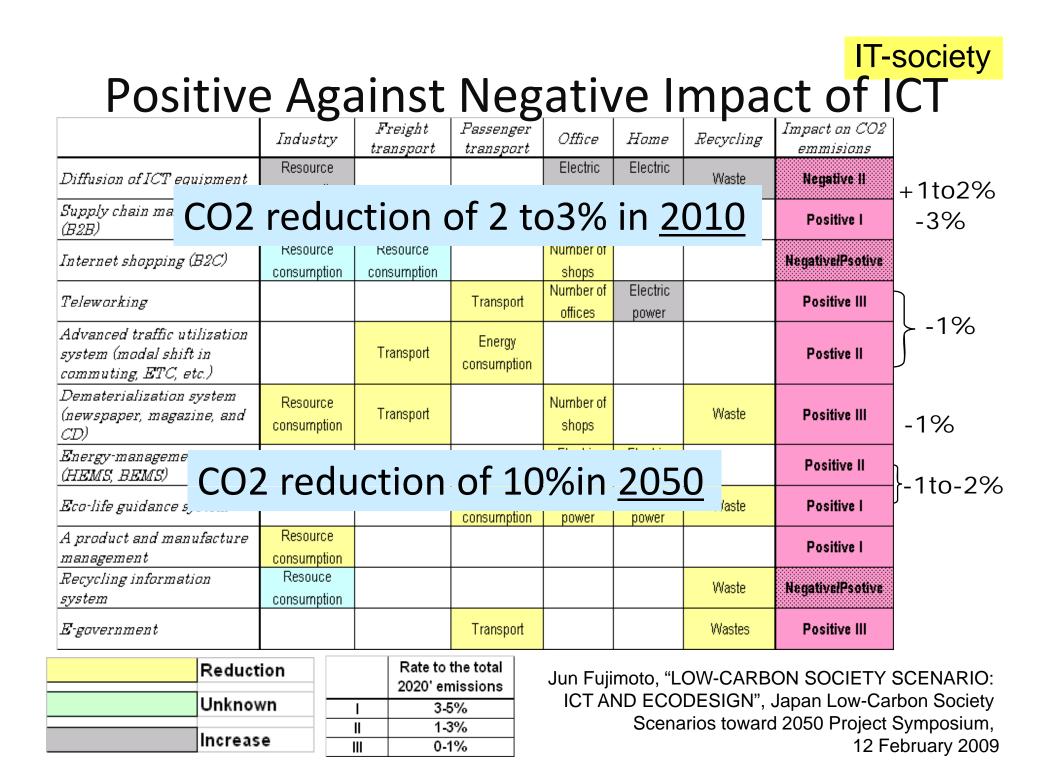
- 1) Snapshot models;
- cge[country]: Quasi steady computable general equilibrium (CGE) model
- enduse[country]: Energy technology bottom-up models
- ESM: Energy supply model
- HPLM: Household production/lifestyle model
- TDM: Transportation demand model
- 2) Transition models;
- PHM: Population and household model
- BDM: Building dynamics model
- MSFM: Material stocks and flow model
- EME: Econometric type macro-economy model

Group 2: Extended Snapshot Tool (ExSS)

Group 3: Backcasting Model for roadmap design and transient control (BCM)

Urban system

Estimated results on potential CO₂ emission reduction in the urban area by HP, CGS and DHC with wheeling (aggregated by prefecture)


Prefecture	Potential CO2 reduction rate	Prefecture	Potential CO2 reduction rate	Prefecture	Potential CO2 reduction rate
Hokkaido	16.6%	Ishikawa		Okayama	18.1%
Aomori	17.5%	Fukui	17.5%	Hiroshima	18.6%
Iwate	16.0%	Yamanasi	17.9%	Yamaguti	18.0%
Miyagi	18.7%	Nagano	17.9%	Toskushima	18.0%
Akita	15.9%	Gifu	16.5%	Kagawa	21.7%
Yamagata	17.1%	Shizuoka	21.0%	Ehime	18.8%
Hukusima	18.2%	Aichi	23.7%	Kochi	16.7%
Ibaragi	20.9%	Mie	19.3%	Fukuoka	24.3%
Tochigi	ochigi 18.1%		19.7%	Saga	19.6%
Gunma	20.7%	Kyoto	19.0%	Nagasaki	19.1%
Saitama	Saitama 25.3%		30.0%	Kumamoto	18.5%
Chiba	Chiba 21.6%		19.8%	Oita	17.0%
Tokyo	kyo 30.4%		22.2%	Miyazaki	17.5%
Kanagawa	29.5%	Wakayama	18.6%	Kagoshima	17.9%
Niigata	17.5%	Tottori	18.7%	Okinawa	21.9%
Toyama	18.4%	Shimane	16.3%	Japan	18.6%

Keisuke Hanaki, "Potential of low carbon city formation and its analysis", Japan Low-Carbon Society Scenarios toward 2050 Project Symposium, 12 February 2009 41

Trans syster	portation	2050Vision: Passenger transport				
		Metro Urban	Metro Suburb	Provincial Urban	Provincial Rural	Total
TransServ capita	Compact neighborhood	Δ Rehabilitation	O Rehabilitation	Δ Rehabilitation	OCompact Settlement	112->33Mt To 1990
Pkm(Tkm) TransServ	Compact city	Δ City center renewal	Δ Withdrawal	Δ City center renewal	×	- 70% Including
\sum_{Mode}	Enhance public transit	Δ Pricing	Δ Park & Ride etc.	Olrt	Δ van pool, shared taxi	(Inter-city Passenger: 30km-)
Vkm Pkm(Tkm)	Improve load efficiency	Δ Utilize small vehicles		Δ Enhance sharing	×	Index:
Fuel Vkm	Improve fuel consumption	©Urban mode	Olocal mode		©: - 30% O: - 20%	
$\frac{\mathrm{CO}_2 EF}{Fuel}$	Low carbon energy	Δ less room for improve	Obiofuel, Low Carbon Electricity for EV and PHEV etc.			`∆: − 10% ×: no room
CO ₂	pop(million)	46→40	15→12	27→20	35→23	124→94
<i>capita</i>	t−CO ₂ /capita の70%削減に向	0.66→0.27	0.94→0.35	1.03→0.38	1.11→0.51	0.90→0.35 w Carbon Society"

2050年の70%削減に向けたビジョンの例 Yuichi Moriguchi, "Transportation in Low Carbon Society", Japan Low-Carbon Society Scenarios toward 2050 Project Symposium, 12 February 2009

