

Innovation and transitions to low carbon societies: lessons from the UK

Jim Watson, Director, UKERC

LCS-RNet Annual Meeting, Yokohama 17th July 2018

Overview

- 1. UK policy context
- 2. Innovation: a systems perspective
- 3. Three case studies of UK policy
- 4. Conclusions and policy lessons

UK policy context

Innovation systems

Linear model of innovation process	Understanding innovation:	
Research Develop- ment Demon- stration Diffusion	from	

Source: Global Energy Assessment кексно

Innovation systems

Meeting global climate targets Innovation is already making an impact

Source: IEA World Energy Outlook (2016)

@UKERCHQ

Meeting global climate targets But: innovation takes time

Source: UKERC / Committee on Climate Change

Meeting global climate targets Public funding for energy R,D&D

Meeting global climate targets Carbon pricing

UK Energy Research Centre Markets and technologies are diverse: one price doesn't fit all

There is often a need to bridge the 'valley of death'

Source: The Carbon Trust / Infrastructure Intelligence

UKERC

UK Energy Research Centre

Different types to public and private finance also required

Figure 5: Mission-oriented finance along entire innovation chain in the renewable energy sector

UK case studies Energy efficiency in buildings

UK case studies Offshore wind

UK case studies Low carbon vehicles

June	Total	Diesel	Petrol	AFV
2018	234,945	74,361	145,035	15,549
2017	243,454	103,564	129,169	10,721
% change	-3.5%	-28.2%	12.3%	45.0%
Mkt share 2018		31.7%	61.7%	6.6%
Mkt share 2017		42.5%	53.1%	4.4%
Year-to-date	Total	Diesel	Petrol	AFV
2018	1,313,994	428,612	812,535	72,847
2017	1,401,811	613,985	729,168	58,658
% change	-6.3%	-30.2%	11.4%	24.2%
Mkt share 2018		32.6%	61.8%	5.5%
Mkt share 2017	-	43.8%	52.0%	4.2%

Source: Society of Motor Manufacturers and Traders

HM Government

The Road to Zero

Next steps towards cleaner road transport and delivering our

Lessons for policy

- Government policies shape the rate and direction of energy innovation, but national policies need to account for global trends
- Public funding of innovation is important, and needs to go beyond R&D to support demonstration and scaling up
- Carbon pricing necessary but not sufficient to create markets: specific policies, financing and institutions also required
- The UK has embraced a more 'mission-oriented' approach at a conceptual level, but implementation is very mixed

Thanks

@UKERCHQ @watsonjim2

www.ukerc.ac.uk